
|||||||III
United States Patent (19)
Kelley et al.

54 SCANLINE RENDERING DEVICE FOR
GENERATING PXEL VALUES FOR
DISPLAYING THREE-DEMENSIONAL
GRAPHICAL MAGES

75) Inventors: Michael Kelley, San Mateo; Stephanie
Winner, Santa Clara, both of Calif.

73) Assignee: Apple Computer, Inc., Cupertino,
Calif.

21)

22)

Appl. No.: 359,953
Fied: Dec. 19, 1994

Related U.S. Application Data

63 Continuation of Ser. No. 811,796, Dec. 20, 1991, aban
doned.

Int. Cl." G06T 15/50; G06T 15/40;
GO6T 1/20

U.S. Cl. 395/126; 395/122; 395/63
Field of Search 395/126, 122,

395/121, 135, 120, 119, 163, 162, 164,
127

(51

52)
58)

(56) References Cited

U.S. PATENT DOCUMENTS

4,594,673 6/1986 Holly 395/21
4,658,247 4/1987 Gharachorloo.
4,697,178 971987 Heckel 395/122

STAGE ONE 70

OsCS

WERCA
INTERPOAON

LE

TKEN PAt

STAGE TWO
705

OBECTIAAPASN

CNRO
NFORMATON

HIDDEN SURFACE
REMOWAL

(Z-BUFFER)

RGBA CACANS
OE

US0055.17603A

11 Patent Number: 5,517,603
(45) Date of Patent: May 14, 1996

4,885,703 12/1989 Deering 395/22
4,945,500 7/1990 Deering 395/122
5,001,651 3/1991 Rehme et al. 395/26
5,123,085 6/1992 Wells et al.............................. 395/12
5,128,872 7/1992 Malachowsky et al. 395/162
5,222,204 6/1993 Swanson 395/27
5,307,449 4/1994 Kelley et al. ... 395/19
5,343,558 8/1994 Akeley 395/26
5,394,516 2/1995 Winser 395/119

Primary Examiner-Raymond J. Bayerl
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor & Zaf

2

57) ABSTRACT

A rendering device for providing 3-D graphics rendering in
a computer system. A hardware scanline rendering approach
is utilized. Using a hardware scanline rendering approach
the bandwidth requirements between a system frame buffer
and the rendering device are minimized. The minimization
of bandwidth requirement allows for the rendering device to
be used with existing computer system designs while keep
ing design changes at a minimum. The result is that for a
given desired performance of a combined computer system
and rendering device, the cost of both the computer system
without the rendering device, and the cost of the rendering
device itself may be reduced. The rendering device is
generally comprised of a bus attachment for coupling to the
system bus of the computer system; a scanline rendering
device and a scanout device for transferring the scanline of
shaded pixel values to the system frame buffer.

15 Claims, 20 Drawing Sheets

702

CONROL
OKENS

HORIZONAL
NrpoATON
MoU

sacre TTTTTTTTTTTTTTT
RGB

COMPOSTING
MOE

SCANOUT
OULE

SYSt.
FRAMEBUFF

709

U.S. Patent May 14, 1996 Sheet 1 of 20 5,517,603

105

DISPLAY

SYSTEM
FRAME
BUFFER

HOST
PROCESSOR

GRAPHCS
ACCELERATOR
PROCESSOR

3D OBJECT
DATABASE

SCREEN
Z-BUFFER

FIGURE 1
(Prior Art)

U.S. Patent May 14, 1996 Sheet 2 of 20 5,517,603

292
A

B C
-1

2O3 204
FIGURE 2a
(Prior Art)

2O2
21o 209 A 21

N
2O3 2O7 204

FIGURE 2b
(Prior Art)

202
- 22 A 213

210

21

2ó3 204
FIGURE 2C
(Prior Art)

U.S. Patent May 14, 1996 Sheet 3 of 20 5,517,603

TRANSFORM 3D
OBJECTS INTO
2D OBJECTS

BUILD OBJECT
ACTIVATION
DATABASE

BUILD ACTEVE OBJECT
FORSCANLINE TO
BE RENDERED

RENDER
SCANLINE

UPDATE ACTIVE
OBJECT LIST

FIGURE 3a
(Prior Art)

U.S. Patent May 14, 1996 Sheet 4 of 20 5,517,603

329

V
RESULTING OBJECT
ACTIVATION LIST

O O NO OBJECTS

1 B, C -- 327
2 2 NO OBJECTS

3 3 NO OBJECTS

4. 4. NO OBJECTS

5 5 A

6 6 NO OBJECTS

7 7 NO OBJECTS

8 8 NO OBJECTS

328
322 321 320

FIGURE 3b
(Prior Art)

329 340

\ ? 341
OBJECT ACTIVE

ACTIVATION LIST OBJECT LIST RENDERED SCREEN
O NO OBJECTS NO OBJECTS

1 B, C B, C
2 NO OBJECTS B, C

3 NO OBJECTS B, C

4. NO OBJECTS B, C

5 A B, C, A

6 NO OBJECTS A

7 NO OBJECTS A

8 NO OBJECTS A

343 342

345

FIGURE 3C
(Prior Art)

U.S. Patent May 14, 1996 Sheet 5 of 20 5,517,603

405
402

HARD DISK

PROCESSOR

4O6

KEYBOARD

408

HARD COPY
DEVICE

FRAME DISPLAY
4O7 BUFFER DEVICE

CURSOR
CONTROL
DEVICE

RENDERING
DEVICE

FIGURE 4

U.S. Patent May 14, 1996 Sheet 6 of 20 5,517,603

556

DISPLAY
DEVICE

555

FRAME
BUFFER

RENDERING
DEVICE

HOST
COMPUTER

FIGURE 5

U.S. Patent May 14, 1996 Sheet 7 of 20 5,517,603

HOST
COMPUTER

FRONT-END
PROCESSORS

606

asion 3D OBJECT TRANSFORM 6E
LIST DATABASE DATABASE LIST

607

RENDERING
PIPELINES

FIGURE 6a

U.S. Patent May 14, 1996 Sheet 8 of 20 5,517,603

620 625

HOST
coMPUTER -->

RENDERING
PIPELINES

621 622 623 624

ACTIVE
3D OBJECT TRANSFORM OBJECT

LIST

OBJECT
ACTIVATION

LIST
DATABASE DATABASE

Figure 6b

U.S. Patent May 14, 1996 Sheet 9 of 20 5,517,603

STAGE ONE 701 292
-

OBJECTS C2S

703 704

OBJECTIDATA PARSING

WERTICAL HORIZONTAL
INTERPOLATION INTERPOLATION

MODULE MODULE

STAGE Two TTT
705

CONTROL
INFORMATION

HDDEN SURFACE
REMOVA
(Z-BUFFER)

RGBA CALCULATIONS
MODULE

CONTROL
TOKEN PATH NFORMATION

STAGE THREE

RGB
COMPOSITING

MODULE

707

SCANOUT
MODULE

SYSTEM
FRAME BUFFER

FIGURE 7

U.S. Patent May 14, 1996 Sheet 10 of 20

801

RECEIVE OBJECS NO
STAGE FFO

802

VERTICAL INTERPOLATION
TO DENTIFY ACTIVE

OBJECTS AND IDENTIFY
HORIZONTAL SPANS OF
OBJECTS ON CURRENT

SCANLINE

803
INTERPOLATE SHADING
PARAMETER VALUES

ASSOCIATED WITH OBJECT
TO DETERMINE

PARAMETER VALUES FOR
SPAN END POINTS

804

GENERATE AND
PROPOGATE SPAN
SET-UP TOKENS

805

TRANSFER SPAN
COORONATESTO

HORIZONTAL INTERPOLATION
MODULE FOR GENERATION
OF PIXEL INTERPOLATION

TOKENS

806

GENERATE PXEL
NTERPOLATON
TOKEN VALUES

807

ASSEMBLE PXE.
NTERPOLATION
OKEN VALUE

GET NEXT
PXEL COORDNATE

AS PXE
N SCAN

YES

FIGURE 8a

5,517,603

U.S. Patent May 14, 1996 Sheet 11 of 20 5,517,603

START

RECEIVE GLOBAL MODE SET-UP
TOKEN AND SET APPROPRIATE

820

PROCESSENG VALUES, SET
Z-BUFFER TO MAXIMUMZ-VALUE

821

RECEIVE SPAN SET-UP
TOKENS FOR OBJECTS

822

LOAD Z-REGISTER
AND RGBO, DATA

RECEIVE PIXEL
INTERPOLATION TOKEN

CALCULATEZ-VALUE FOR PXEL
BY USING LIRPEQUATION WITH

PXELINTERPOLATION VALUE AND
Z VALUES OF SPAN ENDPOINTS

826

Z-VALUE
OF PIXEL OF PZE PRESSR of
LESS THAN VALUE PIXEL BY CONVERTING

N z-ByFF5 TO NULL TOKEN

827

INSERT NEW
Z-VALUE NZ-BUFFER

LAST OBJECT
TO BE PR9CESSED

YES

TO
FIGURE 8b.

(Cont.)

FIGURE 8b)

U.S. Patent May 14, 1996 Sheet 12 of 20

FROM
FIGURE 8b.

2nd PASS
SHAD ow TESTING

O YES 83

PERFORM SHADOW
COUNT ANALYSIS

3rd PASS

SHADow TESTING

PERFORM PASS3
SHADOW ANALYSS

83

PERFORM AMBENT COLOR
CONTRIBUTION ANALYSIS

83

PROPOGATE FRONT MOST
SHADED PXELS WAPIXEL
NTERPOLATION TOKEN

NO

FIGURE 8b-1

5,517,603

U.S. Patent May 14, 1996 Sheet 13 of 20 5,517,603

START

840

RECEIVE GLOBAL MODE SET-UP
TOKEN AND SET APPROPRIATE

PROCESSING VALUES

84

RECEIVE PIXEL INTERPOLATION
TOKEN FROM STAGE 2

842

O = 1
(TRANSPARENCY
PROCESSING)

PERFORMADDITIVE
TRANSPARENCY BLENDING

NO

FILTERED
TRANSPARENCY

SPECIFIED

PERFORM FILTERED
TRANSPARENCY BLENDING

LOAD PXEL COLORWAUES
NTO CORRESPONDING

LOCATION IN SCANLENE BUFFER

NO

846

LAST
PXETO

BE composiTED

TRANSFER TO SCANOUT

FIGURE 8C

U.S. Patent May 14, 1996 Sheet 14 of 20 5,517,603

901
910 A.

902 -1 C
BC

FIGURE 9

FIGURE 10

U.S. Patent May 14, 1996 Sheet 15 of 20 5,517,603

1101

INPUT FIFO AND
CLOCKRATE
CONVERSION

COMMAND
DECODE

VERTEX SORT

VERTICAL DVDE

VERTICAL
INTERPOLATION

HORIZONTAL
NTERPOLATION

TOKEN
ASSEMBLY

TO
PIPELINE

FIGURE 11

U.S. Patent May 14, 1996 Sheet 17 of 20 5,517,603

1301 1302 1303 1313
1312 - - - -

m’? (*RIGHT LEFT) (o) (LEFT) Ax
---------------- -------------

1302a

(1002)

COUNTING CIRCUIT
FOR COUNT LEADING 3
OS OUTPUT COUNTN

1309

SHIFT LEFT N BITS
2 XLENGTH

16 BT SUBSTRACT
(START OFFSET)

306

NVERT TO 16-N
SIGNIFICANT BITS

13 BIT COUNTER
A X 3

307

SHIFT LEFT N BITS
DISCARD 4 LEAST
SIGNIFICANT BITS

12 X 12 MULTIPLIER CIRCUIT ROUND
TO 10 MOS SIGNIFICAN BITS

1311

FIGURE 13

U.S. Patent May 14, 1996 Sheet 18 of 20 5,517,603

1401 1402
NASB

143
N
W9 MULTIPLEXOR

1404
MULTIPLEXOR

1406
V- oPERAND 1496a

CARRY-IN N
1405

CARRY-OUT SUM

- to a 1407 1408 1409 s33

W1

1412
N 1413 1411
OPERAND OPERAND
INPUTA INPUT B CARRY-IN

414

SUM
N CARRYout

415 1416 1417 1434
O -
O MULTIPLEXOR W9

O

142 321 1319 OPERAND OPERAND
INPUTA INPUT B CARRY-N

1418
1423 CARRY-SUMADDER
N
CARRY-OUT sum 1425

1426 / N 1424
OPERAND OPERAND
INPUT B INPUT A

1422
CARRY-PROPOGATE ADDER

SUM
N
1429

FIGURE 14a

5,517,603 Sheet 19 of 20 May 14, 1996 U.S. Patent

City || E. HT19||-||

Z£7||

FEEEEEEE|-||-||-

U.S. Patent May 14, 1996 Sheet 20 of 20

START

FRONT-END PROCESSORS
PROPAGATE SEND DIRECT INPUT
STREAM COMMAND DESIGNATING
TARGET PIPELINES OFFSET O AND 1

FRONT-END PROCESSORS SENT
GLOBAL MODE SET-UP TOKENTO

DEFINE DESRED SHADING FUNCTIONS

ACTIVE OBJECT LIST CONTENTSSENT
TO BOTH PIPELINES SIMULTANEOUSLY

RENDERING OF EACH SCANLINE BY THE
RESPECTIVE RENDERING PIPELINES
(THIS STEP INCLUDES THE VERTICAL
AND HORIZONTAL INTERPOLATION

STEPS DESCRIBED WITH RESPECT TO
STAGE 1, 2, AND 3 PROCESSING)

FRONT-END PROCESSOR PROPAGATE
SCANOUT SYNCHRONIZATION TOKEN

FRONT-END PROCESSOR PROPAGATE
SWAP-BUFFER TOKEN

FRONT-END PROCESSOR PROPAGATE
DMA/SET-UPISTART TOKEN TO BOTH
RENDERING PIPELINES TO ENABLE

AND START SCANOUT

PLACE SCANOUT OF SCANLNEBUFFER
OF SECOND PIPELINE IN TRISTATE,
SCANOUT OF SCANNE BUFFER FOR

A FIRST PIPELINE

PLACE SCANOUT OF SCANLINE BUFFER
OF FIRST PIPELINE IN TRISTATE,

SCANOUT OF SCANLINE BUFFER FOR
A SECOND PEPELENE

1501

1502

1503

1504

1505

1506

1507

1508

1509

FIGURE 15

5,517,603

5,517,603
1

SCANLINE RENDERING DEVICE FOR
GENERATING PXEL VALUES FOR
DISPLAYING THREE-DMENSIONAL

GRAPHICAL MAGES

This is a continuation of application Ser. No. 07/811,796,
filed Dec. 20, 1991, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the field of computer

controlled display systems, in particular, devices for render
ing pixels for displaying 3-dimensional graphical images.

2. Description of the Related Art
As the processing capability of computer systems has

grown, so have the ways of displaying data generated by the
computer systems. Many vocations now use computer sys
tems as a fundamental tool. For example, in the area of
architectural design, 3-Dimensional graphical images (or
3-D images) of buildings or other structures are dynamically
created and manipulated by a user. A computer system is
able to capture and process data in order to display the 3-D
image, in a time that is much faster than could be done
manually. As computer hardware technology has advanced,
so has the development of various methods, techniques and
special purpose devices for rapidly displaying and manipu
lating 3-D images.
A 3-D image is represented in a computer system as a

collection of graphical objects. Generally, there are two
known approaches to providing high performance genera
tion of 3-D images. A first approach focuses on rapidly
drawing the graphical objects that comprise the 3-D graphics
image. This approach is referred to hereinafter as the object
approach. The object approach embodies a hidden surface
removal algorithm commonly known as the screen Z-buffer
algorithm. A second approach looks to processing the
graphical objects with respect to the scanlines on which they
would appear on a display. The second approach is referred
to hereinafter as the scanline approach. The two approaches
involve certain trade-offs. These trade-offs include cost,
performance, function, quality of image, compatibility with
existing computer systems and usability.
As mentioned above, a 3-D image will be represented in

a computer system as a collection (or database) of graphical
objects. The database may have been created through the use
of any of a number of commercially available application
software packages. The database may be in any of a number
of standard graphics formats (e.g. PHIGS or GKS). It is
common that the 3-D graphical objects are polygons (e.g.
triangles) or some other high level object. The process of
transforming a collection of graphical objects into a 3-D
image is termed rendering. Literally, the rendering process
takes object information and converts it to a pixel represen
tation. It is in the rendering process where the object and
scanline approaches differ.

In the object approach, the majority of the function related
to the rendering process is performed by specially designed
graphics accelerators. These graphics accelerators perform
the necessary operations to create the pixel representation of
the objects. The pixel representation may then be used by a
display system to "draw' the graphical object on a display
screen. A schematic of the object approach is illustrated in
FIG. 1. In FIG. 1, a general purpose host computer 101 is
used to maintain and create a 3-D Object Database 102. As
described above, the 3-D Object Database contains the 3-D

10

15

20

25

30

35

40

45

50

55

60

65

2
Objects which comprise the 3-D image. Coupled to the host
processor 101 is a system frame buffer 106. The system
frame buffer 106 is further coupled to the display 105. The
system frame buffer 106 contains the data, e.g. RGB values,
for each pixel in the display 105.
The primary components of the object approach are

embodied in the graphics accelerator processor 103 and the
screen Z-Buffer 104. The graphics accelerator processor 103
performs various graphical functions such as transforma
tions and clipping. The screen Z-Buffer 104 is used for
hidden surface removal. During the rendering process for a
graphical image, the rendered pixels are transferred to the
system frame buffer 106.

Using the object approach, each of the 3-D objects in the
database 102 is rendered individually. Using a triangle
object as an example, the rendering process generally
involves the following steps, and is illustrated in FIGS.
2a-2c,

1. Derive a 2-D triangle from the graphical object defi
nition. The transformation step, as illustrated in FIG. 2a,
results in a triangle 201 with vertices. A 202, B 203 and C
204.

2. Perform any necessary dipping of the object. Clipping
refers to removing portions of the object that are not within
the bounds of a predetermined viewing area.

3. Generate horizontal spans for the object. A horizontal
span refers to a portion of the object that intersects a
scanline. A span is comprised of one or more pixels. For
example, in FIG.2b, see span 209. Typically this occurs
through a linear vertical interpolation of the object.

4. Generate values for each of the pixels in the span. This
process is commonly referred to as horizontal interpolation.
FIG. 2c illustrates horizontal interpolation. This step will
include such functions as shading of the pixels, hidden
surface removal and storing the pixel values into a screen
RGB frame buffer.

5. Repeat steps 3 and 4 until the object has been rendered.
6. Repeat steps 1, 2, 3, 4, and 5 until all the objects have

been rendered.
The Step 1 derivation of a 2-D triangle is needed in order

to map into the two-dimensional coordinate systems that are
typically used by known display systems. The third coordi
nate of a 3-D graphical object is depth (e.g. “Z value'), and
is used to determine whether or not the object is behind
another object and thus out of view (i.e. hidden).

Vertical interpolation, as described in Step 3 above, is
illustrated in FIG. 2b. Vertical interpolation is typically
performed in the following fashion. First, active edges are
determined. An active edge is defined as an edge of the
object that intersects a scanline that is being processed. A
span is defined as the pixels on the scanline that would
connect the two intersection points of the active edges. The
triangle 201 is comprised of edges 205, 206 and 207. The
edge 205 is defined by the segment connecting vertices A
202 and B 203, the edge 206 is defined by the segment
connecting vertices A 202 and C 204 and the edge 207 is
defined by the segment connecting vertices B 203 and C
204. Generally, for any particular scanline, there will be 2
active edges. The exception being when an edge is horizon
tal. For example, in FIG. 2b, for scanline 208, the active
edges are 205 and 206. Thus, for scanline 208, there is a span
209 for object 201.
The next step is to determine the coordinates of the

end-points 210 and 211 of span 209. First it must be
understood that each active edge is simply a line. Thus, the
difference between successive points in the line are linear.

5,517,603
3

As the vertical ordinate is simply the current scanline, only
the horizontal ("X") value need be calculated. Typically, this
is done using a forward differencing calculation. In forward
differencing a constant, say Apis determined that is between
each horizontal coordinate (e.g. using the formula Ap=P1
PO/Y1-Y0, where P1 and P0 are pertinent pixel values, such
as “R” of RGB, at Y1 and Y0 for the respective end-points
of an edge). Thus, the horizontal coordinate value may be
determined by simply adding Ap to the previous correspond
ing coordinate value. It is known that using forward differ
encing makes other techniques of improving rendering per
formance, e.g. parallel processing, more difficult.
A non-desirable aspect of the forward differencing tech

nique is that a high number of bits are required to be stored
and propagated in order to retain the necessary numerical
precision needed for graphics applications. This is a tradeoff
to eliminating certain operations, namely division opera
tions, that would otherwise be required in the vertical
interpolation process.

Referring to FIG. 2c, shading the pixels in span 209 is
then performed. Shading refers to establishing the values for
the pixels comprising the span 209. The coordinates of the
successive pixels on the span may be determined through the
means such as a counter. Horizontal interpolation to deter
mine shading values for each of the pixels may occur using
either linear interpolation or perspective corrected interpo
lation. In any event, as the values for a pixel 212 are
determined, the values for subsequent pixels, e.g. pixel 213
can be estimated through horizontal interpolation.
As noted above, the object approach generally utilizes the

screen Z-Buffer algorithm. The screen Z-Buffer algorithm
provides for hidden surface removal. Hidden surface
removal is necessary for the display of 3-D images, since the
surfaces in view depend on the vantage point from the
viewing direction and refers to the "hiding' of areas of an
object that are "behind' another object. The hidden surface
removal Z-Buffer algorithm is known in the art and requires
a local frame buffer. The screen contains the pixel values of
objects as they are rendered. As the location of any object
may be anywhere on the screen, the local frame buffer must
have enough storage to support the display of all pixels on
the display. Once all the objects have been rendered, the
local frame buffer is transferred to the system frame buffer
for display.
The Z-Buffer method utilizes the fact that each object has

an attribute, typically called a Z-value, which is a 3rd
dimensional ordinate. A low Z-value indicates that the object
(or portion of the object) is closer to the viewer than an
object with a high Z-value. The Z-Buffer stores a Z-value for
each pixel on a display. During the rendering process, the
Z-value of a pixel being processed is compared to Z-value
in a corresponding location in the Z-buffer. If the Z-value of
the pixel being processed is smaller than the value in the
corresponding location in the Z-buffer, then the Z-value of
the pixel being process is placed in the corresponding
location in the Z-buffer. Additionally, the pixel value of the
pixel being processed will be placed in the screen frame
buffer, since is is now the "closest' to the viewer.
Some of the tradeoffs of object/z-buffer rendering include:

the requirement of Z-buffer memory, screen frame buffer
memory (in addition to a system frame buffer), and the
difficulty in building a modular type of system due to a
constraint of the Z-Buffer memory needing to be close to the
screen buffer. As a result of such hardware requirements, the
object approach can be a costly approach.

In the scanline approach the 3-D image is rendered a
Scanline at a time, rather than an object at a time. Thus, all

10

15

20

25

30

35

40

45

50

55

60

65

4
objects intersecting a particular Scanline are processed
before writing to the scanline location in the frame buffer.
The scanline approach utilizes two passes. In the first pass,
3-D objects are transformed into 2-D objects and a scanline
object activation list is built. In the second pass, each of the
scanlines are rendered. The flow of the scanline approach is
illustrated in FIG. 3a. As in hardware rendering, transfor
mation of the 3-D objects into 2-D objects occurs, step 30.
Concurrent with the step 301, an Object Activation Database
is built, step 302. The steps 301 and 302 comprise the first
pass.
The Object Activation Database provides, for each scan

line, a list of objects which first become active on that
Scanline. By becoming active, that object may be displayed
on that scanline. This typically occurs by identification of
the highest point of an object (i.e. its lowest Y-coordinate),
and assigning it to the activation list of the corresponding
scanline. The relationship of the Object Activation Database
to the displayed objects is illustrated in FIG. 3b. In FIG. 3b
a display screen 320 is 9 scanlines high. The scanlines 0-8
are numbered from low to high down the left hand side of
the display screen 320. Objects A321, B 322 and C323 are
to be displayed on the display screen 320. It is apparent that
Object A321 has a highest point 326 (which is on scanline
5), Object B 322 has a highest Point 324 (which is on
scanline 1) and Object C 323 has a highest Point 325 (also
on scanline 1).

Still referring to FIG. 3b, the resulting Object Activation
List Database 329 is illustrated. As the points 324 and 325
are on scanline 1, a scanline 1 entry 327 contains the
corresponding objects, namely Object B 322 and Object C
323. Additionally, a scanline 5 entry 328 contains the Object
A 321.

Referring back to FIG. 3a, once the Object Activation
Database 329 is generated and all the 3-D Objects have been
transformed, an Active Object List is created, step 303. The
Active Object List provides a source of identifying for the
scanline being processed, the objects which are active (i.e.
portions of which are displayable on that scanline). The
Active Object List may contain either descriptive informa
tion of the 2-D object (e.g. coordinate information and
shading parameter values) or may contain information defin
ing the active edges of the 2-D object (also including
shading parameter values). FIG.3c illustrates the contents of
an Active Object List 340 with respect to the screen and
Object Activation List 329 of FIG.3b. In Active Object List
340, a scanline 1 entry 341 contains the objects B and C. The
objects B and C remain as an entry for scanlines 2-5. In
scanline 5 entry 342, object A is included (as this is where
the object A is first displayed). As objects B and C are no
longer displayed after Scanline 5, they are not in a scanline
6 entry 343. The entries for scanlines 6-8 are comprised
solely of object A. Rendered Screen 345 illustrates how the
objects would be rendered.

Referring back to FIG.3a, once the object Activation List
is created, the rendering process begins, step 304. As with
hardware rendering, the next steps include 1) vertical inter
polation, to determine the coordinates (and shading param
eters of the coordinates) of a horizontal span that corre
sponds to a particular object on a particular scanline, and 2)
horizontal interpolation, for determining the individual pixel
values for the pixels within the span. Vertical interpolation
occurs for every active object on a scanline. Once the
coordinates for the horizontal span and corresponding shad
ing parameters have been determined, vertical interpolation
is completed and horizontal interpolation begins. When all
the pixels in the span have been shaded, horizontal interpo

5,517,603
S

lation for the span is completed. This shading process is
embodied in step 304. Step 304 is repeated for all the objects
on the active object list. Finally, a test is made to determine
if the last scanline has been processed, step 305. If the final
scanline has not been processed, the active object list is
updated to reflect the active objects for the next scanline,
step 306. The step 306 is generally identical in function to
step 303. If the last scanline has been processed, the pro
cessing for that graphical image is complete. The steps
303-306 comprise the second pass.
An important distinction between the vertical interpola

tion process in the scanline approach and the object
approach is that in the scanline approach portions of mul
tiple objects are rendered at one time. Thus, appropriate
storage is required to retain all the forward differencing
information that will be used as all the objects are being
interpolated. For example, if 10 units of storage are required
for storing the forward differencing information for one
object, 50 units of storage are required for storing the
forward differencing information for 5 objects. Additionally,
since forward differencing is being used, there is an inter
scanline dependence so that the scanlines must be processed
in sequential order.

Scanline rendering provides benefits over object render
ing that include eliminating the need for a frame Z-Buffer
and a screen RGB Buffer, each of which usually are the size
of the display.
A known system that utilized scanline rendering in com

bination with a pipelined object approach is discussed in the
publication "Computer Graphics Principles and Practice
Second Edition' by Foley, VanDam, Feiner and Huges
published by the Addison Wesley Publishing Corporation at
Pages 885-886. The system described provides separate
processing units for creating an Object Activation Database,
Active Object List, Visible Span Generation (i.e. Vertical
Interpolation) and Pixel Shading (i.e. Horizontal Interpola
tion). However, the system as described did not provide for
parallel pipelines.

Aparallel pipeline system was described in the aforemen
tioned "Computer Graphics Principles and Practice Second
Edition” publication at Pages 899–900. The system
described utilized a technique termed object-parallel raster
ization. In this system multiple objects are processed in
parallel.
The tradeoffs discussed above were often premised on an

idea that it is desirable to minimize the number of compu
tations that need to be performed. An example is the forward
differencing technique for linear interpolation. In order to
minimize division operations, a larger amount of data must
be moved and stored through the system. With the matura
tion of semiconductor technology, the cost of circuitry to
perform logic operations has decreased. Thus, it has become
viable to design systems that utilize processing power and
minimize memory. This is especially desirable when space
is a consideration, since storage tends to take up a sizable
amount of valuable space on an electrical circuit.
As described above, known rendering systems typically

perform a high number of linear interpolations. It would be
desirable to provide a method and means where these linear
interpolations may be performed in an efficient manner.
Known high quality 3-D rendering systems are inherently

expensive and incapable of incorporating new functionality
without significant re-design of the inherent architecture of
the rendering system. It would be desirable to provide a
rendering system that is scalable to user needs. It is an object
of the present invention to provide such a system.

It is a further object of the present invention to provide an
interpolation means that does not present the bandwidth, and

10

15

20

25

30

35

40

45

50

55

60

65

6
data storage requirements associated with forward differ
encing based techniques.

It is a further object of the present invention to increase
rendering performance of graphical images through the
rendering of multiple scanlines, without requiring a multiple
increase in data bandwidth requirements.

SUMMARY

A rendering device for providing 3-D graphics rendering
in a computer system, is disclosed. Utilizing a scanline
approach for rendering a 3-D graphical image, alternative
rendering device configurations provide scalable rendering
performance. By minimizing the bandwidth requirement
between the rendering device and a system frame buffer, the
rendering system can be added to existing computer system
designs while minimizing the changes to the design. The
result is that for a given desired performance of a combined
computer system and rendering device, the cost of both the
computer system without the rendering device, and the cost
of the rendering device itself may be reduced.
The rendering apparatus of the preferred embodiment is

generally comprised of bus attachment means for coupling
to the system bus of the computer system; a scanline
rendering means and a scanout means for transferring the
scanline of shaded pixel values to the system frame buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic drawing of a prior art rendering
system.

FIG. 2a illustrates the representation of an object as a
triangle,

FIG.2b illustrates a triangle mapped to a display screen.
FIG.2c illustrates pixels in a horizontal span of a triangle

when mapped to a display screen.
FIG. 3a is a flowchart illustrating a prior art scanline

method for rendering a 3-D image.
FIG. 3b illustrates an Object Activation Database as

utilized in a prior art scanline method for rendering a 3-D
image.

FIG. 3c illustrates an Active Object List as utilized in a
prior art scanline method for rendering a 3-D image.

FIG. 4 illustrates a computer system as may be utilized by
the preferred embodiment of the present invention.

FIG. 5 illustrates a graphics accelerator coupled to a
computer system and a display device as may be utilized by
the preferred embodiment of the present invention.

FIG. 6a illustrates a first graphics accelerator architecture
as may be utilized by the preferred embodiment of the
present invention.

FIG. 6b illustrates a second graphics accelerator architec
ture as may be utilized by the preferred embodiment of the
present invention.

FIG. 7 illustrates a graphics pipelines as may be utilized
by the preferred embodiment of the present invention.

FIG. 8a is a flowchart of the flow of operation for a stage
1 (of FIG.7) as may be utilized by the preferred embodiment
of the present invention.

FIG. 8b is a flowchart of the flow of operation for a stage
2 (of FIG.7) as may be utilized by the preferred embodiment
of the present invention.

FIG. 8c is a flowchart of the flow of operation for a stage
3 (of FIG.7) as may be utilized by the preferred embodiment
of the present invention.

5,517,603
7

FIG. 9 illustrates an example of Vertical Interpolation in
the preferred embodiment of the present invention.

FIG. 10 illustrates an example of Horizontal Interpolation
in the preferred embodiment of the present invention.

FIG. 11 illustrates the functional blocks of the Stage 1
processing unit as may be utilized,by the preferred embodi
ment of the present invention.

FIG. 12 is a schematic functional diagram of a Stage 2
and/or Stage 3 processing unit as may be utilized by the
preferred embodiment of the present invention.

FIG. 13 is a schematic representation of a circuit for
determining the pixel interpolation weight as may be utilized
by the preferred embodiment of the present invention.

FIG. 14a is a schematic representation of a circuit for
calculating a linear interpolation value as may be utilized by
the preferred embodiment of the present invention.

FIG. 14b illustrates the bit positions of a weighting value
as may be utilized by the preferred embodiment of the
present invention.

FIG. 15 is a flowchart illustrating the processing flow of
multiple parallel rendering pipelines as may be utilized in
the preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus for rendering multiple scanlines
in a computer controlled display system is described. In the
following description, numerous specific details are set forth
such as data structures, in order to provide a thorough
understanding of the present invention. It will be apparent,
however, to one skilled in the art that the present invention
may be practiced without these specific details. In other
instances, well-known circuits, control logic and coding
techniques have not been shown in detail in order not to
unnecessarily obscure the present invention.

Overview of the Computer System of the Preferred
Embodiment

The computer system of the preferred embodiment is
described with reference to FIG. 4. The present invention
may be implemented on a general purpose microcomputer,
such as one of the members of the Apple() Macintosh(E)
family, one of the members of the IBM Personal Computer
family, or one of several work-station or graphics computer
devices which are presently commercially available. In any
event, a computer system as may be utilized by the preferred
embodiment generally comprises a bus or other communi
cation means 401 for communicating information, a pro
cessing means 402 coupled with said bus 401 for processing
information, a random access memory (RAM) or other
storage device 403 (commonly referred to as a main
memory) coupled with said bus 401 for storing information
and instructions for said processor 402, a read only memory
(ROM) or other static storage device 404 coupled with said
bus 401 for storing static information and instructions for
said processor 402, a data storage device 405, such as a
magnetic disk and disk drive, coupled with said bus 401 for
storing information and instructions, an alphanumeric input
device 406 including alphanumeric and other keys coupled
to said bus 401 for communicating information and com
mand selections to said processor 402, a cursor control
device 407, such as a mouse, track-ball, cursor control keys,
etc, coupled to said bus 401 for communicating information
and command selections to said processor 402 and for

O

15

20

25

30

35

40

45

50

55

60

65

8
controlling cursor movement. Additionally, it is useful if the
system includes a hardcopy device 408, such as a printer, for
providing permanent copies of information. The hardcopy
device 408 is coupled with the processor 402 through bus
401.

Also coupled to the computer system of the preferred
embodiment is a frame buffer 409 which is further coupled
to a display device 410, preferably a display device capable
of displaying color graphics images. The frame buffer 409
contains the pixel data for driving the display device 410.
The display device 410 would be further coupled to a
rendering device 411, also known as a graphics accelerator.
Typically, such a rendering device 411 is coupled to the bus
401 for communication with the processor 402 and frame
buffer 409. The preferred embodiment is implemented for
use on a Macintosh computer available from Apple Com
puter, Inc. of Cupertino, Calif.

FIG. 5 illustrates in more detail, a rendering device as
coupled to a host computer system in the preferred embodi
ment. First, a host computer system 550 is coupled to a
frame buffer 551 and a rendering device 555. The host/frame
buffer coupling 552 is an optional coupling when the ren
dering device is installed. Such a coupling may be desirable
in instances where the rendering device 555 is not being
utilized, e.g. when the application being executed does not
require the display of 3-D graphical images.
The host/rendering device coupling 553 is typically

through a means such as the bus 401, described above with
reference to FIG. 4. The rendering device/frame buffer
coupling 554 is also typically over a DMA means. The
information flowing over this coupling will typically consist
of pixel data of images or scanlines that have already been
rendered. Finally, the frame buffer 551 is coupled to the
display device 556, wherein pixel data to drive the presen
tation of the graphical image is stored.
The rendering device of the preferred embodiment oper

ates with display systems with fast raster support. Fastraster
support refers to raster scan display systems where the frame
buffer 551 can accept incoming scanlines of display data at
high speed. Besides graphics applications, fast raster support
is typically used for applications such as display of video
data. Thus, the system of the preferred embodiment is
compatible with systems that have support for video appli
cations.

As will be described in more detail below, the preferred
embodiment of the present invention utilizes a scanline
approach to rendering. From a computer system design
standpoint, the principle advantages in utilizing a scanline
approach are the reduction of bandwidth between the graph
ics accelerator and the host/frame buffer, reduced require
ments for low latency communication between the graphics
accelerator and the host/frame buffer, and increased coher
ence of the data transferred from the graphics accelerator
and the host/frame buffer. Moreover, for a given desired
performance of the combined computer system and graphics
accelerator, these advantages reduce both the cost of the
computer system without the graphics accelerator, and the
cost of the graphics accelerator itself.

Shading Algorithm of the Preferred Embodiment

Before a pixel is shaded, it must be determined whether
it is front most. As will be described in detail below, this
occurs in the preferred embodiment through a scanline
Z-Buffer algorithm. Once it is determined which pixels of an
object are visible, a shading algorithm is used to determine

5,517,603

pixel values (i.e. their color). Typically, the shading algo
rithm will take into account material properties of the object
surface and the sources of light in the scene to determine the
color of the pixel. In the preferred embodiment, a Phong
Shading is performed at the endpoint vertices of a span while
Gouraud shading is performed for the pixels across the span.
Material properties in the preferred embodiment include a
diffuse RGB color, specular power (shininess), specular
RGB color and surface normal. Light sources in the pre
ferred embodiment include an infinite light source and an
ambient light source. Finally, in the preferred embodiment,
shading is based on a diffuse reflection model with the
option of adding a specular reflection model.
The color of a particular pixel in an object can be most

accurately calculated as the sum of the diffuse, specular, and
ambient contributions for each of the color components. The
specific diffuse color component, in this case the color red,
is calculated by the formula:

Diffuse Color=L, KCL-N)

where L is the red color component of the (point) light
source, K is the diffuse red component of the surface, L is
the light vector, and N is the normal to the surface. All
vectors are normalized. The calculation is repeated for each
color component.

Specular reflection describes the light reflected from shiny
surfaces. The specular color is determined by the product of
the light and the specular color of the surface attenuated by
the angle between the direction of the viewpoint and the
reflection of light. Highlights are described by specular
reflection. The red component of a the color of a pixel due
to specular reflection is calculated by the equation:

Specular Color=LK (R-V)"

where L is the intensity of the red component of the (point)
light source, K is the red component of the specular color,
R is the reflection of the light vector off of the surface, and
V is the reversed eye vector (the vector from the surface to
the eye), and n is the specular reflection coefficient (i.e. the
specular power). All vectors are normalized.
The ambient color contribution is calculated by the equa

tion:

Ambient Color=LK

where L is the intensity of the ambient light source and k.
is the ambient color of the surface.

For each of the above color contribution components
RGB, the calculations are repeated. The method of the
preferred embodiment calculates pixel values in this fashion.
However, as objects only have such RGB values defined at
vertex points, interpolation techniques are used to determine
values at points within the object. It is such an interpolation
technique for determining pixel values that is implicit in the
rendering architecture of the preferred embodiment.

Although the preferred embodiment utilizes a technique
with Phong shading at the vertices coupled with Gouraud
interpolations, it would be apparent that other shading
techniques may be used. Such alternative shading tech
niques include, but are not limited to full Gouraud Shading
or Torrence-Sparrow shading.

Rendering Architecture of the Preferred
Embodiment

The rendering architecture of the preferred embodiment is
premised on a scanline algorithm. As described with refer

O

15

20

25

30

35

40

45

50

55

60

65

10
ence to prior art systems, the scanline algorithm renders an
image by scanline. Briefly, the scanline algorithm is a two
pass algorithm. The first pass is used to set up databases of
information that are used to drive the actual scanline ren
dering process. In the first pass, a 2-D object is derived from
each 3-D object in a 3-D object database. During this
process, the scanline upon which the object would first be
displayed (first in the sense of the order of drawing scanlines
to the display device), i.e. become "active", is determined.
This information is used to create an Object Activation
Database, where the entries in the database define the objects
that become "active' on a particular scanline.

In the second pass, the Object Activation Database is used
to create a dynamic list of objects which are "active' on the
scanline(s) currently being rendered. This list is called the
Active Object List. The Active Object List is then provided
to shading means which create the pixel values for the
scanline(s) currently being rendered. The Active Object List
is updated as objects become "active' or "inactive' on the
scanline(s) to be rendered next.

It is known to those skilled in the art that an object may
typically be represented by a data structure which contains
coordinate information and shading parameter values. In the
preferred embodiment, a triangle object is represented by 3
coordinate points, where each of the coordinate points has
shading parameter values. The segments which interconnect
the 3 coordinate points define the bounds of the triangle.
Further in the preferred embodiment a quadrilateral object is
definable. A quadrilateral will be similarly defined, except
that it will define 4 coordinate points (each with correspond
ing shading parameter values). In the preferred embodiment,
a quadrilateral may be provided to the rendering pipeline,
but it would be converted into a pair of triangles for
rendering (each utilizing 3 of the 4 coordinate points).

Alternative systems hardware schematics as may be uti
lized by the preferred embodiment are illustrated in FIGS.
6a and 6b. Referring to FIG. 6a, a host computer 601, e.g.
a microprocessor, is coupled to a graphics accelerator 604 so
that certain functions in the rendering process are carried out
by the host and the accelerator. The host computer 601
maintains a 3-D Object Database 603 and creates an Object
Activation Database 602. As described above, the 3-D
Object Database 603 contains a list of the 3-D objects which
comprise the 3-D Graphical Image, while the Object Acti
vation Database 602 contains a list for each scanline, of the
objects which are first displayed on that scanline.
The graphics accelerator 604 is comprised of front-end

processors 605 and rendering pipelines 607. The front-end
processors 605 perform a plurality of functions in the
rendering process. First, with respect to the first pass of the
scanline algorithm, the front-end processors 605 perform
clipping and transformation functions and provide the Host
computer 601 with information for each object indicating
the scanline on which the object first becomes active. With
respect to the second pass, the front-end processors 605
receive 3D-object information from the Host computer 601
to create an Active Object List 606. The Active Object List
606 identifies objects which are “active' or to be drawn, on
the particular scanline being processed. The front end pro
cessor 605 also provide control instruction to the rendering
pipelines 607. Such control instructions are in the form of
control tokens, and are discussed in greater detail below. The
front end processors 605, are preferably floating point pro
cessors or Reduced Instruction Set Computer (RISC) pro
CCSSOS.

Also illustrated in FIG. 6a is a transformation database
608. The transformation database 608 is used as a matter of

5,517,603
11

convenience to resolve object accessing problems that occur
due to the data structures used in creating the transformation
matrices when transforming 3-D Objects to 2-Dimensional
Objects.

Finally, the graphics accelerator includes one or more
rendering pipelines 607. The rendering pipelines receive
control information from the front-end processors 605 and
the object information from the active object list 606 to
perform the actual calculating of pixel values for each pixel
in a scanline. The rendering pipelines 607 are discussed in
greater detail below.
An alternative implementation is illustrated in FIG. 6b.

The primary difference between this alternative implemen
tation and that illustrated in FIG. 6b is the elimination of
front-end processors and separate storage means for the
transform database and Active Object List. Referring to FIG.
6b, the host processor 620 performs the functions of the
front-end processors 605 of FIG. 6a. Likewise, transform
database 623 and Active Object List 624 are coupled to and
maintained by host processor 620. The host processor 620
then provides the contents of the Active Object List to one
or more rendering pipelines 625, for rendering.
The embodiment illustrated in FIG. 6b is desirable in

implementations where performance is sacrificed in relation
to cost. As the embodiment in FIG. 6b utilizes fewer
components then that in FIG. 6a, its total cost would be
lower. However, as the host processor is called on to do more
work, rendering performance will be impacted.

In whichever form, a graphics accelerator will typically be
one or more printed circuit boards coupled to the computer
systems. Coupling of the graphics accelerator was discussed
above in reference to FIG. 5. In order to simplify the
description of the the rendering pipelines of the preferred
embodiment, the processor that provides the objects from
the Active Object List to the rendering pipelines will be
termed a control processor. In this context, the control
processor would refer to the alternative configurations found
in FIGS. 6a and 6b.
As will be described below, the rendering pipelines in the

preferred embodiment utilize a means for directly interpo
lating pixel values and determining the X-coordinates of
horizontal spans. As compared to prior art systems, the
means of the preferred embodiment significantly reduces the
amount of data storage for an Active Object List and
significantly reduces the data bandwidth requirements.

With regard to the Active Object List, when utilizing
traditional forward differencing techniques the Active
Object List will contain all the shading parameter data for
each active object. It is estimated that the direct evaluation
method of the preferred embodiment would provide a 50%
storage savings. This is caused by the requirement that 2 n.
bits of precision are required for a value, in order to retain
in bits of precision after an arithmetic function is performed.
For example, forward differencing an n bit parameter
requires storing a 2 n current parameter value (pi) and a 2n
parameter delta (pD), resulting in a parameter to be repre
sented by 4 n bits. Direct interpolation only requires the
end-points, i.e. 2 n bits of storage. As the number of
parameters increases, the storage savings becomes more
significant. In the preferred embodiment material properties
parameters diffuse RGB, O (alpha or transparency), specular
RGB, specular reflectivity (N), surface normal (N, N. N.)
and Z are interpolated and propagated through the pipeline.
As shading functionality increases, the number or param
eters required to describe the object will increase. Note that
other parameters such as specular ambient and diffuse light

10

15

20

25

30

35

40

45

50

55

60

65

12
parameters remain constant and thus need not be interpo
lated in the pipeline.

Correspondingly, the data bandwidth (or aggregate data
flow) required to move the objects is decreased. As data
must be moved from the Active Object List to the rendering
pipelines, a reduced quantity of data results in a reduced
bandwidth. Further, forward differencing requires reading
Pi-1 and Ap for 4N bits, then writing back Pi to the Active
Object List (another 2N bits) for a total of 6N bits. As
described above, in direct evaluation, only 2N bits will be
transferred to/from the Active Object List. This results in a
3x savings in the required Active Object List bandwidth of
a system that directly interpolates the end-points. Moreover,
the unidirectional data flow of direct evaluation also sim
plifies system design.

It should be noted that in the preferred embodiment the
graphics acceleration may directly access the system frame
buffer. Thus, inherent in the preferred embodiment is a
Direct Memory Access (DMA) means which will allow the
graphics accelerator to scanout rendered Scanlines directly to
the system frame buffer.

Using direct evaluation also reduces the computation
necessary to set-up the active object list as slope divisions
and parameter delta calculation (i.e. the AP) are not neces
sary. These steps (performed by the front-end processors)
are often expensive because of the care taken to avoid
introducing error in the forward differencing calculation.
A desirable effect provided by direct evaluation is that it

facilitates the rendering of multiple scanlines in parallel.
Because the primitives in the active list contain no infor
mation dependent on vertical position, the same data can be
fed into multiple pipelines, each configured to perform
vertical interpolation for a different scanline. By contrast,
the forward differencing algorithm changes the primitive
description every scanline, so it is difficult to use the same
data to drive the rendering of multiple scanlines.

Description of the Rendering Pipeline
The rendering pipeline of the preferred embodiment is

designed to generate one shaded pixel per pipeline clock
cycle. As described above, the rendering in the preferred
embodiment utilizes the scanline approach. Using traditional
forward differencing linear interpolation techniques, the
rendering of multiple scanlines simultaneously is made
difficult because of the inter-scanline dependencies. The
rendering pipeline of the preferred embodiment avoids such
difficulties through the use of multiple parallel pipelines and
direct evaluation of coordinate and parameter values.
As described above, forward differencing requires high

data bandwidth. During the shading of pixels, i.e. horizontal
interpolation, a given pixel typically will require over 200
bits of data to be transferred for each shading function. A
known technique for minimizing data bandwidth problems
is to provide for fast interconnection between components.
However, this may create other problems such as synchro
nization and control. In connection with direct evaluation,
the preferred embodiment further minimizes the required
bandwidth through direct and distributed evaluation of a
pixel interpolation token. This negates the need to send all
the shading data required for a pixel down the pipeline.
Endpoint values for all parameters are first sent whereupon
an interpolation weight need only be provided for each pixel.
Direct and distributed evaluation will be discussed in greater
detail below with respect to horizontal interpolation.
Operation of the Rendering Pipelines

5,517,603
13

Data and control information is transferred between vari
ous stages in the rendering pipeline area as "tokens'.
"Tokens' as utilized in the preferred embodiment, refer to a
fixed structure for sending and receiving data and control
information. In any event, prior to receiving objects, the
rendering pipelines must be provided with setup informa
tion, to define the rendering functions that will be per
formed. In the preferred embodiment, this occurs by propa
gation of a global mode setup token through the pipeline.
The global mode setup token is described in greater detail in
the section entitled Tokens. Briefly, the global mode setup
token is generated by the control processor (i.e. FIG. 6a or
the host processor per FIG. 6b) and is used to enable diffuse
or specular shading, shadowing and a transparency mode.
Once the pipeline has been set-up, the rendering pipelines

may receive objects to be rendered. First, a Direct Input
Stream Token is sent to the pipelines to designate which
rendering pipelines will receive the forthcoming input
stream. For objects, all the rendering pipelines may receive
the input stream. However, if it is an instruction to cause a
particular processing unit to perform a particular function,
the rendering pipeline can be designated as appropriate by
the Direct Input Stream Token. Next, the objects are sent
down to the pipelines in corresponding DRAW instructions.
A DRAW instruction merely indicates to the pipeline that an
object or more precisely, a span, is to be rendered. The
DRAW instruction is followed by data describing 2, 3, or 4
vertices. Loading 4 vertices causes an independent quadri
lateral to be drawn. For a quadrilateral to be drawn; the
vertices are loaded in the order V0. . . V3. A quadrilateral
is drawn as two triangles. A triangulation field in the DRAW
command indicates along which axis to split the quadrilat
eral. Loading 3 vertices causes the triangulation field to be
ignored.

Loading 2 vertices indicates that a strip of connected
quadrilaterals is being drawn. A quadrilateral strip is always
begun with a detached quadrilateral loading all 4 vertices.
The immediately following DRAW command reloads
V0/V1, and causes 2 more triangles to be drawn, triangu
lated as indicated by the triangulation field, and sharing
previously loaded V2/V3. The subsequent DRAW reloads
V2/V3, sharing the previous V0/V1, and so on, always
swapping which 2 vertices are loaded. The triangulation
field allows the triangulation axis of each quadrilateral to be
specified independently; because the vertex order is
swapped for every quadrilateral, leaving the triangulation bit
constant will result in the cross-hatch triangulation pattern.

FIGS. 7 and 8a–8c describe operation of the rendering
pipelines as an object is being rendered. Referring to FIG.7,
in the preferred embodiment the rendering pipeline, such as
pipeline 607, is comprised of at least 3 stages. Stage one
derives interpolation values, spans and pixels for the objects.
Stage two performs hidden surface removal, shadow func
tions and performs ambient color calculations. In Stage
three, a compositing function is performed as well as
scanout of a rendered scanline. As each stage provides for
standard passing of information and synchronization of
operation within the pipeline, additional shading functions,
such as texturing, may be added between stages two and
three. In the preferred embodiment, Gouraud shading is
preformed. If alternative shading methods are desired, such
as Phong shading, additional stages between state two and
three, may be included. Each of the stages is discussed in
greater detail below.
Stage One

In Stage 1, object descriptions (hereinafter objects) 701
from an active object list and control tokens 702 are input

10

15

20

25

30

35

40

45

50

55

60

65

14
into a stage 1 processing means. The stage 1 processing
means acts as a pre-processor, for receiving and pre-pro
cessing the objects for rendering. A first function performed
in stage one is vertical interpolation (via vertical interpola
tion module 703). A primary purpose of vertical interpola
tion is to identify the X-coordinates for horizontal spans
corresponding to the active objects in the scanline being
processed. The vertical interpolation module also generates
set-up tokens describing the span and it’s shading param
eters. The set-up tokens are forwarded to succeeding stages
in the pipeline. A second function performed is setup for
horizontal interpolation (via horizontal interpolation module
704). Horizontal interpolation is the process by which pixels
in a span are shaded. The horizontal interpolation process is
distributed in that separate stages perform separate shading
functions. The horizontal interpolation module 704 gener
ates Pixel interpolation tokens for each pixel in the span.

FIG. 8a describes stage 1 processing in more detail. First,
the objects from the active object list, corresponding to the
identified scanline, are sent to the stage one input, step 801.
It should be recalled that the data representing the objects
include the coordinates of the vertices and shading param
eters at the vertices. As the objects are sent down in a "burst'
mode, a First In First Out (FIFO) queue is provided which
stores the objects prior to their being processed. The stage
one processing unit may suspend transfer of objects via
provided control signals. Once the objects are input into the
pipeline, they are serially processed within Stage One (but
the processing of an individual object may occur in parallel).
The first step for pre-processing an object for the pipeline,
is vertical interpolation to identify a horizontal span of the
object, step 802. A horizontal span is identified by the end
coordinates representing the portion of the object that is
displayable on the scanline being processed. As the scanline
being processed represents a Y-coordinate, the X-coordinate
is identified by determining the intersection point of a
scanline and a corresponding active edge. Following the
calculation of the span coordinates, corresponding param
eter values are then generated for the span end-points, step
803. This is accomplished by linearly interpolating the
endpoints of the active edges with respect to the scanline
being processed. The details of vertical interpolation are
described in more detail below.

Next, span parameter set-up tokens are generated and sent
down the pipeline, step 804. Such span parameter set-up
tokens contain the RGB values or Z-values for the end
points of the span that were generated in step 803. It should
be noted that certain tokens will only be used by certain
successive stages. For example, stage 3 does not use Z-value
set-up tokens. If a particular stage does not require the
information contained in a particular token, that token will
be ignored.

Next, setup for horizontal interpolation of the span is
performed. Horizontal interpolation refers to the interpola
tion of the parameter values of the end-points of a span,
across the pixels in the span. The set-up for horizontal
interpolation requires transfer of the coordinate points of the
span, step 805, and the generation of a pixel interpolation
token, step 806. A pixel interpolation token consists of the
pixel coordinates and a pixel interpolation weight value. The
pixel coordinates are determined by simply counting across
the span starting at the left most endpoint on the span.
Generation of the pixel interpolation token is described in
greater detail below with respect to horizontal interpolation.
Next, the corresponding Pixel Interpolation token is
assembled and sent down the pipeline, step 807. A check will
be made to determine whether it is the last pixel in the span,

5,517,603
15

step 808. If it is not the last pixel in the span, the next pixel
coordinates are generated (typically by counting to the next
horizontal pixel value), step 809, and the process repeats
starting at step 806.
The steps 802-809 will be repeated for all the objects

received in the FIFO. As there may be some overlap in
processing, i.e. more than one object may be processed
through the pipeline at one time, there is typically no check
after the generation of a pixel interpolation token to see if
there are any more objects in the object FIFO. Moreover,
some of the steps may overlap. For example, the generation
of span parameter values may occur during the horizontal
interpolation set-up processing.
Stage Two

Referring back briefly to FIG. 7, a first function of Stage
Two is hidden surface removal (via hidden surface removal
module 705). The hidden surface removal module 705
utilizes a Z-Buffer algorithm to eliminate pixels that will not
be shaded, because they are "behind other objects (i.e. not
front most). Shadow analysis, to further eliminate pixels that
will not be shaded, may also be performed in conjunction
with Z-analysis. The shadow analysis is also performed by
the hidden surface removal module 705. Stage 2 also per
forms an ambient color calculation on the visible pixels (via
RGBA module 706), and places these values into the Pixel
Interpolation Token. The output of stage two are the front
most, non-shadowed spans, as well as tokens that are
flowing unprocessed through the pipeline, e.g. null tokens.

FIG. 8b illustrates the steps performed in Stage Two.
First, prior to receiving any object data, the stage two
processing unit receives the Global Mode set-up token, step
820. The Global mode set-up token is used to set appropriate
processing criteria for the desired rendering functionality.
Next, the span parameter set-up tokens generated in stage
one are received, step 821, and the relevant data (i.e. Z and
RGBo values) is loaded into registers embodied within the
processing unit, step 822.

Stage 2 processing begins when a Pixel Interpolation
token is received, step 823. First a corresponding Z-value for
the pixel is calculated, step 824. The Z value for the pixel is
calculated by directly evaluating a linear interpolation
(LIRP) function, using an interpolation weight value con
tained within the pixel interpolation token. When comparing
Z-values, a lower Z-value means that the object is closer to
the viewer. In this context, this means that a first object with
a higher Z-value than a second object, will be behind and
thus hidden by the second object. It should be noted that the
Z-buffer will always be initialized to a maximum Z-value so
that it will have a valid value to compare incoming Z-values
with. This horizontal interpolation of the Z-values of the
various pixels in the span is described in more detail below.
Once the Z-value of the pixel has been determined, a
comparison is then made of the Z value for the pixel with a
Z value at the corresponding pixel location in the Z buffer,
step 825. If the Z value of the pixel is greater than the value
in the corresponding location in the Z buffer, processing of
the pixel is terminated, step 826. Termination of processing
of the pixel involves converting the corresponding token
into a null token, whereupon it will flow through the pipeline
unprocessed. If the value is less than or equal to the value in
the Z buffer, then the new lower Z-value is returned to the
Z-buffer, step 827 and a check for the last object is made,
step 828. If it is not the last object, the next pixel interpo
lation token is received, step 823. If it is the last object then
it must be determined if pixel elimination because of shad
owing will be performed. A first check to see if Second pass
analysis will be performed, step 829. This second pass is

10

15

20

25

30

35

40

45

50

55

60

65

16
performed if the shadow count flag in the global mode setup
token is set. If yes, second pass analysis is performed, step
830, otherwise it is determined if third pass shadow testing
is to be performed, step 831. If yes, third pass analysis is
performed, step 832. The aforementioned shadow analysis is
described in greater detail below. In any event, the next step
will be to determine the RGB ambient color contributions
for the pixel, step 833. This simply involves linear interpo
lation of the pixel based on the endpoint parameter values of
the corresponding span. Once this is performed, the RGB
values are placed back into the pixel interpolation token and
the token is propagated to the next stage.
Stage Three

In Stage Three, a compositing function is performed (via
RGB composition module 707). Compositing involves the
generation of pixel values due to transparency of objects.
This will typically occur when multiple objects have iden
tical Z-values. A transparency value that is associated with
an object is termed O. The O. value represents the percentage
of the final color value that the corresponding object con
tributes. For example, an object with an O. of 50, will
contribute 50% of the final color pixel value. In the preferred
embodiment two types of transparency calculations are
performed, additive transparency and filtered transparency.
In additive transparency, the existing values are simply
added to the incoming color value after being scaled by O.

In filtered transparency the new color value is linearly
interpolated with the old color value to generate the filtered
color value. In filtered transparency, the Relative Weight
used for the interpolation function is the value provided with
the incoming color data, i.e. o.

Finally, in the stage 3 a scanline buffer in scanout module
708 is used to collect the final values of the pixels for the
scanline being processed. Once all the objects in the scanline
have been processed, the contents of the scanline buffer is
transferred to the system frame buffer 709.

FIG. 8c further illustrates Stage Three processing in the
rendering pipeline. As in Stage Two, the global mode setup
token received, step 840, and the appropriate processing
parameters are set. In this case the processing parameters
will dictate which of additive or filtered transparency mode
will be used. Next, Pixel Interpolation tokens are received,
step 841. The first step is to determined if transparency
processing will not be performed by checking if O-1, step
842. If O-1, then the pixel color values will be loaded into
the scanline buffer, step 846 (since the incoming pixel
shading values provide 100% of the blended color value). If
transparency processing has been specified, additive trans
parency is performed, step 843. Next, it will be determined
if filtered transparency will be performed, step 844. If yes,
filtered transparency blending is performed, step 845. Once
the blending has occurred and a new color value has been
generated or if now filtered transparency blending is per
formed, the new pixel color values is loaded into the
corresponding location in the scanline buffer, step 846.

It is then determined if the final pixel has been processed,
step 847. If the last pixel has not been processed, the next
pixel interpolation token is received, step 841. If the last
pixel in the last span has been processed, the contents of the
scanline buffer is transferred to the system frame buffer via
a scanout, step 848. As described above, it is the system
frame buffer that is used to drive the display means. It should
be noted that in the preferred embodiment, the scanline
buffer is double buffered. This will allow the contents of the
Scanline buffer to be transferred to the frame buffer while a
new scanline is being processed.
Vertical Interpolation
As defined above, vertical interpolation is the process by

which the X-coordinates of the end-points on a span are

5,517,603
17

determined. A span is the portion of an object that is visible
on the scanline being rendered. The vertical interpolation of
the preferred embodiment is achieved by a direct solution
method that uses object description information and the
identify of the scanline. Vertical interpolation for an object
on a scanline being rendered is illustrated with respect to
FIG. 9. Referring to FIG. 9, the coordinate points for the
vertices of the object are A(Xa,Ya)901, B(Xb, Yb) 902 and
C(Xc,Yc) 903. The scanline being processed is Ycs 904.

In this example, the coordinate points for the object being
processed are: Xa=60, Ya=20, Xb=40, Yb=150, and Xc=80,
Yc=180. The current scanline Ycs=100. By the process of
Vertex Sort (which is described in greater detail below), the
active edges of the object for Ycs are determined to be AB
910 and AC911. An active edge is merely one that intersects
the current scanline. An edge is considered active if it
satisfies the equation:

Y-top<Y current scanline<=Y-bottom,

where the Y coordinate increases from top to bottom. For the
edge AB 910 Y-top=Ya=20, and Y-bottom=Yb=150; so that
20<100<=150 and the equation is satisfied. For the edge AC
911 Y-top=Ya=20, and Y-bottom=Yc=180; so that
20<100<=180 and the equation is satisfied. With respect to
edge BC912Y-top=Yb=150, and Y-bottom=Yc=180; so that
the equation 150<100<=180 is not satisfied and edge BC912
is not an active edge.
The X-coordinate for the points where each scanline

intersects an active edge is calculated by first determining a
relative weight w for the edge on scanline Yes using the
formula:

where Y is the current scanline, Yo is the highest scanline
ordinate value (lowest in numerical value) of the active edge
and Y is the lowest scanline ordinate value (highest in
numerical value) of the active edge.
The X-coordinate is then determined by directly evaluat

ing the linear interpolation equation:

where X is the leftmost horizontal coordinate of the active
edge and X is the rightmost coordinate of the active edge.

With respect to FIG. 9, the active edge AB 910 intersects
the current scanline 904 at point D (X,Y) 905. The active
edge AC intersects the current scanline 904 at point E (X,
Y) 906. For the point D905, the relative weight is

W = (Ycs - Ya)/(Yb - Ya)
= (100-20)/(150-20)
= 80/130
= 8/13.

Inserting this into the linear interpolation equation, the
X-coordinate is determined as

Xo = Xbc1 - W) + Xa(W)
= 40(5/13) + 60(8/13)
= 200113 - 480/13

s: 680/13

= 524/13

which is rounded to 53. Thus, the coordinates for point D
905 are (53, 100).

10

5

20

25

30

35

40

45

50

55

60

65

18
For the point E906, the relative weight is

W = (Yes - Ya)/(Yc-Ya)
(100-20)/(180-20)
80/160

112.

Inserting this into the linear interpolation equation, the
X-coordinate is determined as

X Xa(1 - W) + Xc(W)

= 60(1/2) +80(1/2)
= 30 + 40

70

Thus, the coordinates for point E906 are (70, 100).
When using such interpolation techniques, fractional

components may arise due to the divisions required in
achieving the W value. This may result in the rendering of
pixels on the boundaries between two triangles twice, or
missing pixels to be rendered. To account for such fractional
components, a rule is adopted that pixel centers in both the
X and Y directions are at X.50 and Y.50, respectively. With
respect to FIG. 9, the pixel center for the point A901 (60,
20) would be (60.50, 20.50). Further, a pixel is covered if the
equation

minkpixel co-ordinate-max

is satisfied. In order for a point to be included in a horizontal
span, the point coordinates are compared to the X-coordi
nate characteristics of the endpoints of the span and the
Y-coordinate characteristics endpoints of the active edges
for the object the span is associated with. Referring again to
FIG.9 for a point to be within the horizontal span defined
by the points D905 and E906, the following criteria must
be met:

For the X-Coordinate:

and
for the Y-Coordinate:

100.50&Y&s100.50.

By using<(less than) for comparison on one side and
>=(greater than or equal to), the rendering of pixels on the
boundaries between two triangles twice, or missing pixels, is
avoided. Here the Y coordinate value will typically be
satisfied because it refers to the scanline being rendered.
Generation of Shading Parameters for Span Set-up Tokens
The shading parameter values, i.e. the RGB, Z and o.

values, at each of the span endpoints are calculated in the
same manner as the X-coordinate. Since W has been previ
ously calculated, it is simply a matter of inserting the
provided shading parameter values at the endpoints of the
active edges into the linear interpolation function. Referring
back to FIG.9, the endpoints D905 and E906, the provided
parameter values at each of the endpoints of the active
edges, i.e. points A901, B902 and C903, are provided as
input to the linear interpolation function. For example, the
shading parameters at endpoint D905 may be calculated
using the linear interpolation equation as P=P(1-W)=
P(5/13)+(PA(8/13); where P is the provided parameter
value at point A901, P is the provided parameter value at
point B 902 and PD is the interpolated parameter value at
point D 905. Similarly, the shading parameters for the

5,517,603
19

endpoint E906 may be calculated using the linear interpo
lation equation as P=PA(1-W)+P(W)=(PA+P)/ 2;
where P is the provided parameter value at point A901, PC
is the provided parameter value at point C903 and P is the
interpolated parameter value at point E906. These shading
parameter values at the endpoints of the span are calculated
and propagated through the rendering pipeline through cor
responding span set-up tokens.
Generation of a Pixel Interpolation Token
As described above with respect to Stage 1, pixel inter

polation tokens are generated after span coordinates have
been defined. These end-points, say Xa and Xb, are received
by the Horizontal interpolation module, which immediately
compares them to determine which is leftmost. It is assumed
that Xa is leftmost. If Xb is leftmost, Xa and Xb are
swapped. In this scheme, an interpolation weight value W=0
reference refers to the left end of the span (i.e. Xa). A W=1
reference refers to the right end of the span (i.e. Xb). As
described above, the interpolation weight value W refers to
the relative weight for a direct interpolation function which
is used to determine the value of a pixel.

Creating a Pixel Interpolation token requires the genera
tion of two numbers: the target pixel address X and the
interpolation weight W. The target pixel address X genera
tion is accomplished by counting from the leftmost X value
generated from the vertical interpolation step. For generat
ing W, the method of interpolation must first be determined.
In the preferred embodiment, a linear interpolation method
is used. It would be apparent to one skilled in the art to use
other interpolation methods, e.g. perspective corrected inter
polation. It should be noted that use of alternative interpo
lation methods would have an effect on W as well as an
effect on the direct solution method of linear interpolation
utilized in each of the succeeding processing units. It is
anticipated that a perspective corrected implementation may
be used to calculate W, while the linear interpolation meth
ods retained within each of the processing units, thus
enabling a perspective corrected implementation without
requiring the replacement of all the processing units of a
rendering pipeline.

In the preferred embodiment a function WCX) is calcu
lated for each span. The function W(X) is defined as:

Since a linear interpolation of the pixels across the span is
being performed, the slope m of the WCX) function is
constant and can be computed once for the span via the
equation:

m=1(Xright-Xleft).

Thus, by substitution the WCX) function can be reduced to
the equation:

This function is desirable since it minimizes the division
operations that would need to be performed for the span. So
for each pixel in the span, the x-coordinates of the pixel
being rendered and the left most endpoint of the span are
inserted into the WCX) function in order to derive the
interpolation weight W for that pixel.

FIG. 10 illustrates several pixel locations in a span 1001.
The span 1001 was derived using the vertical interpolation
of the preferred embodiment with respect to FIG. 9. In any
event, counting sequentially as described above, a pixel F
1002 has coordinates (56, 100). The corresponding pixel
interpolation weight is calculated as W56-53/70-53=3/17.

10

5

20

25

30

35

40

45

50

55

60

65

20
A pixel G 1003 has coordinates (61, 100) and a correspond
ing pixel interpolation weight that is calculated as Wi-61
53/70-53=8/17. Finally, A pixel H 1004 has coordinates (67,
100) and a corresponding pixel interpolation weight that is
calculated as W=67-53/70-53=14/17.
Horizontal Interpolation

Horizontal interpolation generally refers to the shading of
the consecutive pixels within a span. As described above, the
first stage of the pipeline performs set-up for the horizontal
interpolation process by calculating pixel weighting values,
assembling pixel interpolation tokens and generating span
set-up tokens. In the preferred embodiment the shading
functions are distributed. Each stage or processing unit
performs a separate and distinct function in the rendering of
a pixel. In the rendering process, horizontal interpolation
requires the greatest amount of processing resource.
Advanced shading models require a great deal of data to

render a pixel. For example, a Z buffered Phong shading
calculation requires Z, diffuse color (RGBod), specular
color (RGBs), specular power (Ns), and surface normal
vector (NXNyNZ) as inputs. Depending on accuracy, this
represents about 150 bits of data which must be generated
per pixel. To perform the shading of the preferred embodi
ment, approximately 224 bits would be required. The width
of this data contributes to the high cost of known high
quality rendering hardware.
To reduce the width of the data path, while still main

taining 1 pixel per clock rendering speeds, the rendering
pipeline of the preferred embodiment utilizes distributed
parameter interpolation for determining the value of pixels
in a span. As described above, each processing unit in the
pipeline performs a certain part of the rendering function
ality. Each processing unit requires specific parameter data
(e.g. the Z buffer processing unit requires the interpolated Z
value for each pixel) in order to calculate it's predetermined
function. So, set-up tokens generated in stage 1 with the
parameter information are first sent down the pipeline.
Storage mediums, e.g. registers are embodied within each
processing unit for storing the left and right parameter
values of the current span (e.g. the Z buffer processing unit
has Zo and Z registers). Rather than passing actual inter
polated parameter values down the pipe, the pixel rendering
process is driven by the Pixel Interpolation token. As
described above, this token includes W, representing an
interpolation weight between 0 and 1. As each processing
unit receives the Pixel Interpolation token, it performs a
linear interpolation of the left and right span values to
calculate the interpolated parameter value for the pixel. So
at a pixel location N, in a span with left endpoint A and right
endpoint B, a shading parameter value P may be calculated
by using the linear interpolation function

Because a typical span is several pixels wide, distributed
parameter interpolation reduces the amount of data that must
flow down through the pipeline. For, example, to do the Z
buffer calculation for a 7 pixel wide span, first a Span Setup
token is sent, initializing the Zo and Z registers (32 bits
each). This requires the same bandwidth as sending two
actual interpolated Z values down the pipeline. However,
after this stage, each pixel in the span only requires a W
value to drive direct interpolation means embodied in each
of the processing units. In a comparison of a relative
bandwidth, sending 7 interpolated Z-Values down the pipe
line requires 224 bits, while rendering 7 pixels by sending
interpolated values requires 7*32+7*10=134 bits. This
results in a 50% reduction in data bandwidth requirements.

5,517,603
21

In fact, because many parameters are distributed, and all are
interpolated by the same 10 bit W value, the overall saving
may be much higher.

Effectively this technique increases silicon complexity to
reduce dependence on fast interconnections between pro
cessing units. Each processing unit requires multipliers for
the interpolation function, whereas typical rendering hard
ware only needs an accumulator to implement a forward
differencing algorithm. Although similar techniques could
be used to distribute the forward differencing algorithm
(although savings are lower, because more setup accuracy is
required), there are other factors which favor distributing the
parameter interpolation function. Distributed Parameter
Interpolation allows the use of perspective corrected inter
polation-forward differencing is limited to linear interpo
lation. Perspective corrected interpolation provides superior
texture mapping quality by avoiding the distortions inherent
in linear interpolation.

Referring back to FIG. 10 an example of horizontal
interpolation based on the vertically interpolated span from
FIG.9, is provided. As above, the span endpoint coordinates
are D (53,100) 905 and E (70,100) 906. Span set-up param
eter values have been propagated down the pipeline token
corresponding to the shading parameter values for the end
points of the span. A pixel interpolation token provides the
pixel coordinates and weight value. What is left is to
calculate the shadings values for pixels across the span.
Using the W values calculated above in the description of
generating a pixel interpolation token, at point F (56, 100)
1002 the shading parameter values may be calculated as
P=P(1-W)+P(W)=P(14/17)+P(3/17). At point G
(61, 100) 1003 the shading parameter values may be calcu
lated as P=PA(1-W)+P(W)=P(9/17)+P(8/17). At
point H (67, 100) 1004 the shading parameter values may be
calculated as P=P(1-W)+P(W)=P(3/17)+P(14/17).
Shadowing
As described above, the preferred embodiment may per

form shadow analysis to further eliminate pixels from pro
cessing. The shadowing algorithm utilized in the preferred
embodiment provides for the determination of object
shadow volumes (with respect to a particular light source).
All objects inside of the volume would thus be in shadow.
Sets of dummy polygons, bounding the shadow volume, are
calculated by the host processor (or alternatively by control
processors as illustrated in FIG. 6a). The face normals of the
polygons are oriented so that they face outward from the
volume. Using these dummy polygons, the processing unit
then determines whether each pixel on a visible object is
inside one of the shadow volumes.
The determination of whether an object is in shadow

occurs in three passes of the objects. In a first pass, a Z-buffer
calculation is performed to identify the front most object at
every pixel. The first pass is the default operation of the
Z-buffer and occurs with or without shadow processing. In
a second optional pass, the determination of which of the
identified visible pixels are inside a shadow volume is done
by examining the shadow volumes in front of each pixel.
This is specified when the shadow count flag in the global
mode setup token is set. During this second pass the closest
Z-values are read from the buffer and compared with incom
ing shadow polygons for each light source. The shadow
polygons can be either front or back facing. Their orientation
is specified by a flag, "front", specified in the Z setup token
(described in more detail below). A shadow count is then
determined in the following manner: If a shadow polygon in
front of the pixel faces the front of the scene the shadow
count is decremented by one. If a shadow polygon in front

10

15

20

25

30

35

40

45

50

55

60

65

22
of the pixel faces the rear of the scene, the shadow count is
incremented. A volume entirely in front of the pixel will
generate one increment and one decrement at that pixel,
leaving the shadow count unchanged. If, the shadow count
is lower than it began after all the shadow polygons have
been processed; the pixel is in shadow with respect to that
polygon. In any event, the original "closest' Z value is
written backinto the buffer unchanged during this operation.
A third optional pass is implemented when the shadow

test flag in the global mode token is set. In the third pass, the
"closest' Z-values are read from the buffer and compared
with the incoming Z-values. If they are equal then the
shadow count is examined. If the shadow count is equal to
zero then the object is not in shadow and it is output. If the
shadow count is not equal to zero then the pixel interpolation
token is modified to become a null token.

Tokens in the Preferred Embodiment

As described above, informational and control units that
are transferred between the different stages are called tokens.
Token is a term of art that refers to a data structure with
accompanying information, that is passed between the
stages in the pipeline. Upon receiving a token, each of the
processing units may then 1) process and interpret the token,
2) pass the token to a next processing unit without process
ing or 3) terminate the processing of the token. All process
ing units only process tokens that contain information
needed by the particular processing unit. Otherwise, the
token flows through the processing unit unused.

Tokens in the preferred embodiment can be categorized
into three different types; General Tokens, Setup Tokens and
Control Tokens. Three attributes are common to all tokens.
First, each of the tokens has a width of 77 bits. 77 bits was
chosen as a number that would accommodate all information
needed as well as providing for the inclusion of new
functionality. As some tokens will not require all 77 bits,
some of the bits are unused within the pipeline. Although 77
bits are utilized in the preferred embodiment, it would be
apparent to one skilled in the art to utilize a different number
as the token width.
A second common attribute of all the tokens is the use of

the first bit in the token. The first bit of each token identifies
the token as being a set-up token or a non-setup token (i.e.
a general or control token), and is called the PSetup bit. This
is done to facilitate and simplify the design of the individual
processing units that comprise the pipeline. -
The third common attribute is the use of the succeeding 4

bits after the first bit as a TokenD field. The TokenD field
identifies the token and provides further information for the
processing of the token.
The bit positions of data on the token is important because

the underlying circuitry which interprets the tokens has
hard-wired logic to specific bit positions on them. For
example, as a token enters a processing unit, it initially is
saved in a latching means. Hard wired logic, e.g. an OR gate,
inspects a predetermined bit to determine a logic path that
the token will follow. Such circuit design techniques are
known in the art. However, it would be apparent to one
skilled in the art to modify the position of the information
and to modify the underlying hardware to reflect the new
positions. Alternatively, a means for interpreting tokens
without hardwiring to specific bit positions may be
employed, e.g. through a token parsing means. Such modi
fications would not depart from the spirit and scope of the
present invention.

5,517,603
23

General Tokens General tokens are recognized by all chips
in the pipeline. There are three general tokens; the null
token, the pixel interpolation token and the pixel overlay
token. The null token is a pixel interpolation token whose
processing has been terminated. Processing may typically be
terminated because Stage 2 processing has determined that
the corresponding object is behind or in the shadow of
another object. A null token has a false value in it's PSetup
bit and a Zero (0) value in the TokenID field.

Pixel interpolation tokens are used to drive the horizontal
interpolation process and contain information about a pixel
to be rendered. Generation of the values in the pixel inter
polation token is described in detail below with respect to
horizontal interpolation. The pixel interpolation token is
illustrated in Chart A.

CHARTA
Pixel Interpolation Token

Field Width Walue Use

1 PSetup False
2 Token) 4. 1
3 X 11 Pixel in current scanline segment
4. W 12 Interpolation constant
5. A 10 DiffusefShaded color
6 R 10 Diffuse/Shaded color
7 G 10 Diffusel Shaded color
8 B 10 Diffuse/Shaded color
9 ForceAdditive 1. 1 = Force this interpolation

to act in additive mode
10, Unused 8 Reserved; must be zero

Line 1 indicates that bit 1 will have a false value (typically
0) to indicate that it is not a set-up token. Line 2 identifies
the pixel interpolation token as having a Token ID of 1. From
Line 3, it is shown that the next 11 bits will contain the X
coordinate for the pixel. This may have come from either the
vertical interpolation processing, which would indicate that
the pixel is on one of the active edges, or from a counting
means that is used to identify the X coordinates across the
span.
From line 4, the next 12 bits will contain the interpolation

weight. This interpolation weight will have been generated
in stage 1 during the horizontal interpolation process. Lines
5-8, i.e. the next 40 bits contain the RGBco information
describing the diffuse/shaded color for the pixel. Next, a
force additive field is used to indicate that additive trans
parency blending will be performed in the compositing
stage. Finally, the remaining 8 bits of the pixel interpolation
token are unused.
W is used to interpolate between the boundary values,

generating Z, R, G, B, and O. For R, G, and B the
interpolation operation results in Gouraud shading. X is used
as an address by the Z buffer to access a Z value. The Z
values in the buffer are the "closest' current Zs to be
processed. In operation, the "closest' Z is read from the
buffer and compared with the interpolated Z. If the interpo
lated Z is closer (less that or equal to it), it is stored in the
buffer, the token not modified, and R, G, B and O. are output.
If the interpolated Z is not closer (greater than it), then it is
not written into the buffer, the token is modified to be a null
token and R, G, B and o, are not output.
The pixel overlay token is generated by the control

processor and provides a means by which pixels can be
directly assigned. This may occur for, for example, when
titling is desired on a particular image. The format of the
pixel overlay token is illustrated in Chart B.

10

15

25

30

35

40

45

50

55

60

65

24

CHARTB
Pixel Overlay Token

Field Width Value Use

1 PSetup False
2 TokenD 4 2
3 X 11 Pixel in current scanline segment
4. W 2 Interpolation constant
5 R O Diffusei Shaded color
6 G 10 Diffuse/Shaded color
7 B 10 Diffuse/Shaded color
8 A 10 DiffusefShaded color
9 ForceAdditive 1 = Force this overlay to

act in additive mode
0. Unused 7 Reserved; must be zero

Set-Up Tokens
As noted above, set-up tokens are generated during stage

1 pre-processing. Generation of set-up tokens is described in
more detail in the description of vertical interpolation. The
set-up tokens contain span parameter information for cor
responding pixel rendering functions.

Set-up tokens provide the span endpoint parameter values
that are utilized during the horizontal interpolation process.
The different types of set-up tokens include Z set-up, Diffuse
RGB set-up, Specular RGB set-up, Map set-up and Normal
Set-up.
CHARTC illustrates a Z setup token. Like all tokens, the

first 5 bits are comprised of a PSetup bit and a TokenID. In
this instance, since it is a setup token, the value of this
PSetup bit is a true value (e.g. a binary 1 value). The Z setup
token contains two horizontal Zboundary values, Z0 and Z1
(on lines 3 and 7 respectively), which are used for interpo
lating between to generate a Z value for each pixel of a span.
The Z Setup token also contains a bit called front (on line 5).
This bit is used during the shadow calculation to determine
whether or not the pixel is obscured due to a shadow. Finally,
abit called diffuse is provided (line 4). The diffuse bit is used
to enable lighting calculations that would be performed
when determining if the pixel is in shadow.
The Z set-up token is utilized in stage 2 of the pipeline for

performing hidden surface removal and shadow calcula
tions.

CHARTC
Z Set-up Token

Field Width Value/Use

1. PSetup 1 True
2. TokenD 4.
3. Zo 32 Zo
4. Diffuse Lighting calculations enabled
5. Front Front facing shadow plane
6. Unused 2 Reserved; must be zero
7. Z 32 Z
8. Unused 4 Reserved, must be zero

The Diffuse RGB set-up token is used to provide RGB
values based on a diffuse reflection model. The Diffuse RGB
set-up token is illustrated in Chart D. The Lines 3-6 provides
the diffuse color components for the left most pixel in the
span. The lines 7-11 provide the diffuse color components
for the right most pixel in the span.

5,517,603
25

CHART D
Diffuse RGB Set-up Token

Field Width Walue/Use 5

1. PSetup True
2. Token) 4 OXo,
3. Ado 9 Diffuse colouro
4. Rdo 9 Diffuse colouroKdo
5. Gdo 9 Diffuse colour Kdo O
6. Bdo 9 Diffuse colouro Kdo
7. Ad 9 Diffuse colour*Kd
8. Rd 9 Diffuse colour Kd
9. Gd 9 Diffuse colour*Kd

10. Bd 9 Diffuse colour

15
The Specular RGB set-up token is used to provide RGB

values based on a specular reflection model. The Diffuse
RGB set-up token is illustrated in Chart E. The Lines 3-5
provides the specular color components for the left most
coordinate in the span. Line 6 provides the specular power
component for the left most coordinate in the span. The lines
7-10 provide the specular color components for the right
most coordinates in the span. Line 11 provides the specular
power component for the right most coordinate in the span.

25
CHARTE

Specular RGB Set-up Token

Field Width Walue/Use

1. PSetup 1 True 30
2. TokenD 4. 3
3. Nso 9 Specular powero
4. RSo 9 Specular colour Kso
5. Gso 9 Specular colouro. Kso
6. Bso 9 Specular colouro. Kso
7. Ns 9 Specular power 35
8. Rs 9 Specular colour Ks
9. Gs 9 Specular colour*Ks

10. Bs 9 Specular colour Ks

The Normal set-up token is used to define normal values
for each of the the coordinate endpoints. The Normal set-up 0
token is illustrated in Chart F. The lines 3-5 define the
normal for the left most pixel in the span and the lines 6-8
define the normal for the right most pixel in the span.

45
CHART F

Normal Set-up Token

Field Width Valuefse

1. PSetup True 50
2. TokenD 4. 4
3. Nx 12 Normal
4. Nyo 2 Normal
5. Nzo 2 Normal
6. Nx 12 Normal
7. Ny. 12 Normal
8. Nz 12 Normal 55

Control Tokens
Unlike general tokens and set-up tokens, control tokens

are generated by the control processor (with one exception
being a Scanout Data token, which is also generated by the 60
Z chip 705 when scanning out its buffer). Control tokens are
commands to target chips in the pipeline to perform a
particular function, e.g. swap buffers, output scanline, etc. It
is through the use of control tokens that operation and
resources of the pipeline are managed.
The Load Scanline DMA Write Register Control Token,

illustrated in Chart G, is used to control the writing of a clear

65

register in the Stage 2 and 3 processing units.

CHART G
Load Scanline DMA Write Register Control Token

Field Width Walue/Use

1. PSetup 1. False
2. TokenD 4. 0xF
3. OpCode 8
4. RGB 1 Target RGB chip
5. Z. 1 Target Z chip
6. Unused 22 Reserved, must be zero
7. Write Value 40 Value written by

scanline DMA

The Scanline DMA setup/start Control Token provides the
start address, length, delay, write, scanout enable, and
scanout mode data, and is illustrated in Chart H. The DMA
reference is to a Direct Memory Access component in the
computer system. In order to avoid going through the host
processor to send data to the system display buffer, a DMA
a component is typically utilized. The RGB/Z flag at lines
4-5 is used to indicate which of the stage 1 or stage 2
processing units the the token is targeted for. The delay field
on line 8 specifies how may pixels to let flow through before
beginning to read from the scanout buffer. The flag is
necessary since the buffer may be cleared without outputting
its contents. The scanout mode field on line 11 specifies
which 32 of the 40 bits in each pixel location should be read
out. The different modes are: read 40 bits and round to 32
bits. The round to 32 bit mode is not used in the stage 2
processing unit. The scanout enable is used to permit
scanout of the contents of the buffer. Finally, the token is
used to initiate the writing of the buffer.

CHARTH
Scanline DMA setuplstart Control Token

Field Width Walue.Use

1. PSetup 1 False
2. Token) 4. 0xF
3. OpCode 8 2
4. RGB 1 Target RGB chip
5. 2. 1 Target Z chip
6. Start 11 Starting address
7. Length 11 Number of pixels to access
8. Unused 14 Reserved, Inust be zero
9. ScanoutEnable Read and scanlout

addressed locations
10, Unused 1 Reserved, must be zero
11. Scanout Mode 1 1 = round node, O at no round
12. WriteFnable Write addressed

locations from reg
13. Unused 22 Reserved, must be zero

The Wait for Scanline DMA Completion Token is used to
determine if the back buffer is done scanning out or clearing
the data, and is illustrated in Chart I. As the stage 2 and stage
3 processing units are double buffered, one buffer may be
scanned out while the other is being written to. If the back
buffer scanout is not completed, the stallout signal is
asserted. This prevents the swapping of buffers. Once the
scanout is completed, the stallout signal is negated. This
assures that the buffers will not be swapped until the scanout
is completed.

5,517,603

CHART I
Wait for Scanline DMA Completion Control Token

Field Width ValuciOse

1. PSetup False
2. TokenD 4. 0xF
3. OpCode 8 3
4. RGB Target RGB chip
5. Z Target Z chip
6. Unused 62 Reserved, must be zero

When a complete Z-Buffer or compositing operation is
completed for an entire scanline, the two buffers may be
swapped. The Swap Buffers Control Token illustrated in
Chart J. Once the buffers have been swapped, the back buffer
can be cleared or scanned out using the DMA setup/start
token described above.

CHART
Swap Buffers Control Token

Field Width Value/Use

1. PSetup False
2. TokenD 4. 0xF
3. Opcode 8 4
4. RGB Target RGB chip
5. Z 1 Target Z chip
6. Unused 62 Reserved, must be zero

The Global mode setup token is used to initialize the
pipeline to the type of rendering that will be performed, e.g.
using a specular or diffuse rendering model, enable shad
owing and the transparency mode. Each of the rendering
type operations are discussed in detail above. The Global
mode setup control token is illustrated in Chart K.

CHARTK
Global Mode Setup Control Token

Field Width Waluefise

1. PSetup False
2. TokenD 4. 0xF
3. OpCode 8 5
4. DiffuseShade Enable diffuse shading

contribution
5. SpecularShade 1 Enable specular shading

contribution
6. Shadow Count 1 Enable shadow count
7. ShadowTest 1 Enable shadow test
8. TransMode 1 = additive, O = blended
9. ControlRlags 2 Indicate control/data,

and pipeline interlock
10. InvertShadow 1 1 = in shadow is visible,

O it out of shadwo is visible
11. Force2Visible 1 1= force Z test to return

'visible'
12. DisableZWrite 1 = don't allow

Zishadow bits to be written
13. Unused 54 Reserved, must be zero

The Jam control token is used to used to permit the token
to pass through the processing unit without any processing.
It is typically used to send control information out the
bottom of the pipeline. The Jam Data Control Token is
illustrated in Chart L.

10

15

20

25

30

35

40

45

50

55

60

65

CHARTL
Jam Data Control Token

Field Width Walue. Use

1. PSetup False
2. TokenD 4. 0xF
3. OpCode 8 6
4. Unused 24 Garbage
5. Data 40 Data to scanout

DESCRIPTION OF PROCESSING STAGE
CIRCUITRY

In the preferred embodiment, each of the successive
stages in the pipeline are implemented as individual inte
grated circuits. Each of these chips embodies several mod
ules which carry out the functionality of the stage. It is of
note that in the preferred embodiment, the stages 2 and 3 are
implemented via the same integrated circuit. The choice of
operation as a Stage 2 or 3 is determined by certain control
inputs that are provided to the chip. However, it would be
apparent to one skilled in the art to combine multiple
discrete processing units in order to eliminate transfer time
that may occur because of any "off-chip' data transfers that
may be required. It would also be apparent to one skilled in
the art to configure the system of the preferred embodiment
utilizing more discrete processing units, e.g. creating two
stage one processing units performing vertical and horizon
tal interpolation set-up tasks. Such different hardware imple
mentations would not cause a departure of spirit and scope
from the present invention.
Clock Domains of the Rendering Architecture
To simplify system integration, the pipeline has three

asynchronous clock domains. The Data Clock is used by the
input port of the stage one processing unit. The Data Clock
is typically synchronous to the data source and defines the
maximum speed at which data can be transferred to the
rendering pipeline.
The Pipe Clock drives the processing units within the

pipeline (with the exception of the input port of the stage one
processing unit) and effectively defines the shading speed of
the pipeline. It is significant that the Pipe Clock is asyn
chronous to the rest of the rendering system, so that the Pipe
Clock may be increased to match future generations of chip
technology, without effecting the rest of the system.
The Scanout Clock is used by the Scanout of the the last

stage of the rendering pipeline and is synchronous to a
receiving device, e.g. the system frame buffer. The Scanout
Clock controls the maximum rate at which pixels are
scanned out of the on-chip scanline buffer.
Stage 1 Functional Schematic

FIG. 11 illustrates the functional blocks of the Stage 1
chip. An input block, 1101, provides an input FIFO and
clock rate conversion. As data, e.g. object primitives from
the active object list, are input into the rendering pipeline
where they are first placed into an input FIFO. It should be
noted that at this time that the rendering pipeline has three
asynchronous clock domains. The data clock is used by the
input port of the first stage and is usually synchronous to the
data source, i.e. the control processors. The data clock
defines the maximum speed at which data can be transferred
to the pipeline. The pipe clock drives the rendering process
and effectively defines the shading speed of the pipeline.
Only the internal pipeline chips use this clock, so it can be
increased to match chip technology without effecting the rest

5,517,603
29

of the system. Pipeline data bandwidth scales with the pipe
clock. Also, most computation in the Stage 1 chip is driven
by the pipe clock. The scan-out clock is synchronous to the
receiving device, e.g. the target frame buffer. It controls the
maximum rate at which pixels are scanned out of the on chip
scanline buffer. Thus, as a further function of the input block
1101, clock rate conversion from the data clock to pipeline
clock is performed.
When the data exits the FIFO it enters a command decode

module 1102. The command decode module 1102 decodes
the data into the appropriate command structure. Most of the
commands are decoded by a programmable logic array
(PLA). The exceptions are the draw command and the
overlay pixels command. As described above, the draw
command is the fundamental command for drawing an
object.
The remainder of the modules respond accordingly to a

DRAW command. Briefly, two functional modules are then
entered to initiate vertical and horizontal interpolations.
These are vertex sort 1103 and vertical divide 1104. The
vertex sort 1103 is used to determine the active edges of an
object that is to be drawn. The vertical divide 1104 is used
to determine the interpolation weight value that will be used
for vertical interpolation. The vertical interpolation and
horizontal interpolation functional modules then follow and
are described above. Finally, the outputs of vertical inter
polation module 1105 and horizontal interpolation module
1106 feed into a token assembly module 1107 for creation of
a token. Once the token is created it is sent down the pipeline
synchronized to the pipeline clock.
Input Block
The STAGE 1 chip is designed with a 64 bit input path,

which can be configured as one or two 32 bit ports, or a
single 64 bit port. The STAGE 1 chip is capable of process
ing four independent input streams, SRCID pins are used to
indicate the source of each transfer. What this means is that
up to four control processors may send data to the rendering
pipeline(s).
Two synchronous FIFOs receive the data from the two 32

bit ports, permitting burst transfer rates of 64 bits/dock.
However, once past the FIFOs, the two data streams merge
into one 32 bit path, for a maximum sustained bandwidth of
one 32 bit word/clock; this is roughly balanced to the
sustained throughput of the remainder of the chip. Two extra
bits are added to each word to indicate the source ID.
Finally, the merged data stream is synchronized to the Pipe
dock domain by a one word/clock synchronizer.
The preferred embodiment utilizes 16 word deep FIFOs,

providing 64 bytes of buffering for each input port in Dual
32 and Single 64 input modes. However, in Single 32 mode,
Port A ping-pong between the two FIFOs, effectively dou
bling depth. The FIFOs are compiled, so the depth may be
increased in alternative embodiments.
A further function provided in Stage 1 is flow control.

Flow control is used to prevent overrun of input buffers of
the stage 1 FIFO. Flow control is achieved with a STALL
signal for signalling to the control processor to stop sending
data. Additionally, an EMPTY signal is provided and can be
used to drive DMA bursts (i.e. for signalling to the control
processors to commence sending data). When the EMPTY
signal is provided, the pipeline(s) will accept a predeter
mined number of data transfers prior to asserting the STALL
signal.

Because it is the first chip in the pipe, the STAGE 1 chip
must perform vertical interpolation on all the data types
necessary for different rendering functions. Because it is
difficult to predict what data types will be necessary in the

10

15

20

25

30

35

40

45

50

55

60

65

30
future, the STAGE 1 chip is designed to process a generic
data type called a parameter, which represents data in any of
a variety of supported data types.

Each parameter has two data types associated with it: the
input format, which represents the format in which the data
is input into STAGE 1, and the processing format, which is
the internal format in which the STAGE 1 chip stores,
interpolates and sends the data down the pipe. Input formats
are chosen to be well aligned and easy to manipulate for the
control processors. Processing formats represent the actual
minimum precision necessary for the data. For example, the
input format of a normal vector might be three 16 bit signed
integers, while the processing format is three 12 bit signed
integers. The STAGE 1 chip supports five input formats and
four processing formats as illustrated in the following Charts
M and N.

CHARTM
Data Input Formats

Input Input Data
Format Type Nunn Fields Size Typical Use

4x8U Unsigned 8 4 32 bits RGBA
bit int

3x10S Signed 3 32 bits Vector
11.11.10 bit

int
3x16S Signed 16 bit 3 64 bits Vector

int
2x16U Unsigned 16 2 32 bits X, Y

bit int
x32U Unsigned 32 l 32 bits Z.

bit int

CHARTN
Processing Formats

Processing Num
Format Type Fields Storage Size Typical Use

4x9U Unsigned 9 4 36 bits RGBA
bit int

3x12S Signed 12 bit. 3 36 bits Vector
int

2x16U Unsigned 16 2 36 bits X, Y
bit int

1x32U Unsigned 32 1 36 bits Z.
bit int

Only the 3x12S format used for vectors is signed. It
would be apparent to provide a more flexible design that
would permit any parameter to be specified as signed or
unsigned. The format information for the different vertex
types is stored in an Input Data Format RAM; this RAM is
loaded by the host processor, so new parameters can be
added as required. Each DRAW command sent to the stage
processing unit includes FormatAddress, the address of the
appropriate vertex format description. The first word holds
the number of words of data for each vertex; it's read and
loaded into a 5 bit counter, which counts the words as they
are formatted and output. The format information is re-read
for each subsequent vertex until the Draw command is
complete.

In the preferred embodiment, only two parameter data
types are fixed: the X and Y projected screen co-ordinates of
each vertex are 16 bit unsigned ints, in a 13.3 format. This
format addresses a 213=8192X8192 pixel screen space with
% of a pixel resolution and pixel centers at 0.50.
Command Decode
When received in STAGE 1, the DRAW command is

handled by circuit logic in the STAGE 1 processing unit.

5,517,603
31

Most other commands are single 32 bit words, which are
decoded by a PLA. The exception is the Overlay Pixels
command, which requires two 12 bit counters, one to
compute pixel address, the other to count pixels.
The Command Decode Module generates one token per

clock; a token either writes a control register, writes a
location in the vertex parameter RAM, or renders a span of
a triangle.
Vertex Sort
As described above, the Draw command draws a triangle

between vertices V, V and V, each of which specifies one
of the four vertices stored in the parameter RAM. The Vertex
Sort module then fetches the Y coordinate of each of the
three vertices, and determines which two edges of the
triangle are active (i.e. intersect with the horizontal line
specified by the contents of the YCurrent register which
defines the current scanline). If two active edges are found,
the triangle is visible, and the top and bottom Y of both
edges are passed to a Vertical Divide module. Although the
vertices are sorted vertically, the horizontal span start and
end points have not yet been calculated, so the edges are
arbitrarily designated A and B. Later, when the X co
ordinates have been interpolated, the final left/right test is
performed, and the edges are swapped if necessary.
As described above, an edge is considered visible/active

if it satisfies this equation:

Yaops currentscanlines-Bottom

where the Y co-ordinate increases from top to bottom.
Note that the test is not Y(FYcensin.<=Ye
tom, which would occasionally cause boundary pixels
between abutted polygons to be rendered twice (a
serious problem when rendering transparent objects).

Vertical Divide
The Vertical Divide module has two active dividers,

which calculate the interpolation weight of the two edges A
and B:

WA-(YBottoma-currentscantine)/(YbottomA-Y.TopA)

W=(Bottomb currentscanline) (BottombTepp)

These calculations are performed to 12 bits of accuracy,
requiring six clocks of latency (radix2 subtract-and-shift
divide, two stages per clock). The interpolation weights are
passed directly to the Vertical Interpolation to determine
span coordinates and parameter values.

In the preferred embodiment all vertex parameters are
stored in four 64x36 RAM. The address for a given param
eter is a concatenation of the parameter number and the
stream context (vertex number selects between RAMs). By
using four RAMs, a parameter can be simultaneously read
for all four vertices; combined with a 4x436 bit crosspoint
switch, the tip and bottom parameter values for both active
edges can be simultaneously read and transferred to linear
interpolators (LIRPs) for generation of the parameter values.
STAGE 2 and 3 Functional Description

In the preferred embodiment, the processing units for
stages 2 and 3 are identical. This is a desirable since it
provides for economic efficiencies in the manufacture of the
pipeline components. It is apparent that the same component
may be used when the requirements of a stage one process
ing unit and a stage two processing unit are compared. When
performing Scanline Z-buffering or operating as a compos
iting engine, both require at least one complete scanline of
memory. In the preferred embodiment two complete scan
lines of memory have been provided in order to support

10

5

20

25

30

35

40

45

50

55

60

65

32
double buffering and to allow scanouts of a previously
rendered scanline while a new scanline is being rendered.
Both require linear interpolation of RGB values. In stage
two it is the generated ambient RGB values and in stage
three it is the blended alpha values used for transparency.
Finally, both require identical pipeline control signals (e.g.
stall signals) and means for sending and receiving signals.

However, some differences do exist. First, Z-buffer and
shadowing logic is not needed by the compositing engine.
Second, the scanout of the stage 3 compositing engine is
synchronous with the receiving device and as in a different
clock domain from the pipeline. However, these differences
are minor So that the economies of manufacture would
outweigh any potential advantages of having separate com
ponents.
A Zchipin signal is used to configure the processing unit.

When the Zchipin signal is high, the unit is configured as a
stage 2 Z-buffer. Conversely, when the Zchipin signal is low,
the unit is configured as a stage 3 compositing engine. The
functions performed when configured as a Z-buffer are
Z-Search; shadow calculation and ambient color calculation.
The functions performed when configured as a compositing
engine are pixel blending and scanout.

FIG. 12 is a functional block diagram of a stage %
processing unit. A RAM 1201 and a RAM 1202 comprise
the dual buffers and consist of one scanline of memory each.
In the preferred embodiment each of RAM 1201 and 1202
comprise 648 words (each word having 40 bits) of random
access memory. RAM control 1203 receives the X data (i.e.
the pixel location) from the pixel interpolation token and
provides corresponding Z-values to the Z interpolation and
compare module 1204 and corresponding oRGB values to
the ORGB interpolation module 1205.
The Z-interpolation and compare module 1204 performs

the Z-buffering required to identify the front-most pixels.
The Z-interpolation and compare module 1204 further
receives the endpoint Z-values 1208 and 1209 from the Z
set-up token and the pixel weight W 1210 from the pixel
interpolation token. The Z-interpolation and compare mod
ule 1204 is coupled to the RAM control 1203 to receive the
Current Z-value at a pixel location and for inserting a new
Z-value into the scanline Z-buffer when appropriate (i.e. the
Z-value of the current pixel is less than the current value in
the Z-buffer). The Z-interpolation and compare module 1204
is further coupled to output control 1206 for allowing the
output of a front-most pixel via the pixel interpolation token
(typically by not converting it to a null token).
The ORGB interpolation module 1205 performs the initial

ambient color calculation of stage 2 and the transparency
calculations of stage 3. The ORGB interpolation module
1205 receives the pixel weight W 1210 from the pixel
interpolation token. The otRGB interpolation module 1205
further receives the endpoint oRGB values 1212 and 1213
from the diffuse span set-up token. With respect to stage 3,
the ORGB module 1205 is coupled to RAM control 1203 in
order to received pixel shading values at the current pixel
location and for inserting shaded (blended) pixel values back
into the scanline buffer. Both the Z-Interpolation and com
pare module 1204 and the ORGB interpolation module 1205
contain linear interpolation circuits that are described in
more detail below.
Output control 1206 controls output 1214 from the pro

cessing unit. The output 1214 of the output control 1206 will
be a pixel interpolation token in stage 2 and the scanout in
stage 3. In stage 2, the output control 1206 will output the
contents of the interpolation module 1205 as part of the pixel
interpolation token. In stage 3, the output control 1206 will

5,517,603
33

output the contents of the scanline buffer, i.e. RAM 1201 or
RAM 1202.
Circuit for calculating the WCX) function

Recall that the function WOX) function is used in the
Vertical Interpolation Module. As it is repetitively used, the
preferred embodiment has provided an efficient means for
calculating the W(X) function. As any given X is a 16 bit
value, the slope m covers a wide range, i.e. 1 to 1/65535.
Representing this range to 10 significant bits requires
16+10-26 bits. Thus, at first view the W(X) function would
require a 26 bit by 16 bit multiplier. However, a technique
and circuit for obtaining the 10 bit result with a 12 bit by 12
bit multiplication operation has been derived and is
described below.

First, it is empirically observed that 14 leading zeros are
being traded between the two multiplicands. This is further
supported by the observation that (Xright-Xleft) is the
maximum value of (X-X left), thereby indicating the
minimum number of leading Zeros in this multiplicand. This
is established by comparing the two multiplicands as illus
trated in Chart O.

CHART O

Value of
Xright-Xleft Leading 0s Value of m Leading 0s

2-3 14 112-1/3 0-1
4-7 13 114-117 1-2
8-15 12 118-115 2-3

32768-65535 O 1/32768-1165536 14-15

First, the 14 leading zeros are replaced with two variables
m' and AX based on n leading 0s, so that:

Since both m' and AX' do not have leading Zeros, both can
be truncated to the 12 most significant bits (10 significant
bits plus 2 guard bits).

Aschematic diagram of such a circuit is illustrated in FIG.
13. The circuit will calculate m' and AX' and output W.
Referring to FIG. 13 circuitry within dashed box 1312
represents the calculation of m' while the circuitry within the
dashed box 1313 represents the calculation of AX". A span
length 1301, is provided as a first input to the circuit within
dashed box 1312. The span length 1301 is simply the
difference of X, X as described above. A counting
circuit 1304, determines the number of leading zeros in span
length 1301 and provides an output value n. The count of
leading zeros n is input to a shift circuit 1307. The shift
circuit 1307 will be described in greater detail below. The
span length 1301 is also provided to a shift circuit 1305. The
shift circuit 1305 shifts the value of spanlength 1301 by the
n bits determined in counting circuit 1304. The output of the
of the shift circuit 1305 is the 12 left most bits after the
shifting of the span length 1301. The output of the shift
circuit 1305 is then input into an inverting circuit 1306,
which inverts the input. The output of the inverting circuit is
the variable m'. The output m' of the invert circuit is then
provided as a first input to a multiplication circuit 1310.

O

15

20

25

30

35

40

45

50

55

60

65

34
An X input 1302, i.e. the current X-coordinate of the

pixel being interpolated, is combined with a binary input
1302a (which has a fixed value of 100 binary) to a create a
16 bit operand for a subtraction circuit 1309. The binary
input 1302a are added as the leading bits in the created
operand. The second input to the subtraction circuit 1309 is
a X input 1303. The X 1302 input provides the X
coordinate of the point that is the left most on the span being
processed. Thirteen bits of the output of the subtraction
circuit 1309 are provided to a 13 bit counter 1308. Three of
the bits are stripped off and recombined at the output of the
counter circuit 1308. The output of the counter circuit 1308
is AX. The output of the counter 1308, along with the
appended 3 bits are then provided to the shift circuit 1307
where the result is shifted by the value provided by the
counter 1304, i.e. n. Further, the four least significant bits of
the result are discarded, creating a 12 bit output. This output
value is AX".
The output of circuit 1307 is then provided as a second

input to the multiplier 1310. The multiplier 1310 then
preforms a multiplication of the outputs of inverting circuit
1306 (i.e. m') and shifting circuit 1307 (i.e. AX) and rounds
to the ten most significant bits. The output of the multiplier
1310 is the pixel weighting value W 1311.

Linear Interpolation Function
As described throughout the description of the preferred

embodiment, all interpolation is performed linearly. It would
have been apparent to one skilled in the art to use other
non-linear forms of interpolation in order to provide differ
ent shading functionality (e.g. perspective corrected shad
ing). As has been discussed above, a direct evaluation
technique is utilized by the preferred embodiment in order to
perform required linear interpolation (as opposed to the
forward differencing technique that prevails in the prior art).
With reference to stage 1, linear interpolation is used to
determine the endpoints of the horizontal spans of an object
(i.e. in vertical interpolation). With respect to stage 2 and
stage 3 of the pipeline, linear interpolation is performed on
the values in the pixel interpolation token to estimate
Z-values (stage 2) or pixel shading values (stage 3). Thus, it
has been found to be advantageous to provide a linear
interpolation circuit.
As described above, the equation for direct LIRP function

is defined as:

The LIRP function requires a weighting value w. The
weighting value w is a value between 0 and 1 that specifies
a linear “blend' of the values A and B. Determination of W
in the creation of Pixel Interpolation Tokens was described
above. W is also calculated for vertical interpolation the w
is determined dynamically for each active edge of an object.
For horizontal interpolation the where corresponds to the
pixel weighting value determined in stage 1. The result of
this expression is A if w is zero, B if w is one, and a value
between A and B when w is a positive fraction less than one.
The LIRP operation of the preferred embodiment operates

in fixed precision arithmetic. Implementing the LIRP opera
tion in fixed precision arithmetic can be wasteful. If w is
defined as a binary fraction between zero and one inclusive
almost an entire bit of resolution is wasted. In the case where
w has 4 bits, 7 encodable values between 1.001 and 1.111
will always be unused.

In the preferred embodiment, a more efficient approach to
encoding w defines 0.1111 to be one and 0.0000 to be zero.

5,517,603
35

All 16 encodable values where w has 4 bits are now useful.
The LIRP equation now becomes:

If w=0.0000, the LIRP value will be 0.1111A. If
w=0.1111, the LIRP value will be 0.111 B. However, in
graphics applications it is known that in order to achieve
high quality rendering, if w=0 or 0.0000, the LIRP value
must be A and if w=1 or 0.1111, the LIRP value must be B.
This is to achieve complete color saturation at the end
points. A rounding factor is therefore added to the LIRP
value to achieve saturation at both A and B0.0001A is added
if waC). 1000. 0.0001B is added if we=0.000. These round
ing factors force saturation at both ends of the range of w,
while tolerating some discrepancies to true linearity at some
midpoints.

With the addition of this rounding factor w no longer
partitions the range between A and B quite uniformly. The
partition between the LIRP values when w-0.01.11 and when
w=0.1000 can be up to twice as large as the partition
between any other two neighboring values of w. The size of
this partition is, however, no larger than the size of every
partition when w is encoded in the standard way described
above.

In describing a circuit to perform the LIRP equation, the
fixed point version of the LIRP equation above is re-written
using two's complement math as follows:

Replacing w with it's two's complement equivalent (w is
the bit inverse of w):

and rearranging terms:

(O. 111--0.0001)+(w))A-i-wB

The first term drops out in two's complement form, leaving
only:

Not incidentally, this approach leads to a very regular (and
thus compact and efficient) custom silicon layout. Convert
ing to one bit multiplications by summing for i=0 to n, where
n is the number of bits-1 in w (4 for this example) and wn
is the most significant bit of w gives:

This equation can be efficiently computed by using a selector
for each bit w to select between adding A or B (shifted
appropriately by 2").
Adding in the appropriate rounding factor to force satu

ration gives:

Adding the rounding factors to the circuit described above is
simply done by adding one new selector at the least signifi
cant bit position.

Referring now to FIG. 14a, a circuit for linear interpola
tion is illustrated. The LIRP circuit is comprised essentially
of 2 to 1 multiplexers, carry sum adders, and a 10 bit carry
propagate adder. The LIRP circuit implements the logic
described above where the bits of the Weighting Value W are
used to select the output of the 2 to 1 multiplexors. The

O

15

25

30

35

40

45

50

55

60

65

36
outputs of the multiplexors are added and the bit patterns are
shifted appropriately to reflect the magnitude of the oper
ands. As the circuit is somewhat repetitive, a description of
a portion of the circuit will suffice.
A first input A 1401 is provided as a first input to the

multiplexer 1403 and a second input B 1402 is a second
input to the multiplexer 1403. The values of input. A 1401
and B 1402 would typically be one of the pairs of parameter
values sent through the pipeline in a set-up token. A third
input, i.e. a selector value, is the value which will determine
whether the first input or the second input will be output
from the multiplexer 1403. The selector value to be provided
to the multiplexor is a bit from the weighting value. For the
multiplexor 1403, the selection value is provided by the
most significant bit of the Weighting Value W, in this case
W91431. This value is the additive saturation value needed
in order to achieve full saturation at the extreme ends. In any
event, it should be noted that if the selection value is a l, the
first input is output from the multiplexer, i.e. the bit pattern
from A 1401. If the selection value is 0 the second input is
output from the multiplexer, i.e. the bit pattern from B 1402.
The bit layout of the weighting value W is illustrated in

FIG. 14b. As is typical in computer representations, e.g.,
binary representations, of numeric values, the least signifi
cant digit values are in the right most storage position. So for
example, a digit W0 1432 will be the least significant digit
and a digit W1 1433 is the second least significant digit. This
continues from right to left storage locations unit. W91450,
which is the most significant digit. Further illustrated in FIG.
14b are the digits of W coupled to corresponding multiplex
ors as described with respect to FIG. 14a.

Referring back to FIG. 14a, the output of the multiplexor
1403 is coupled to a carry-in input 1406 of carry-sum adder
1405. It is also clear from FIG. 14a that the values A 1401
and B 1402 will be used as input to all the multiplexer
devices.
A second multiplexer 1404 also takes as input A1401 and

B 1402. The multiplexer 1404 receives as input the least
significant bit of the Weighting Value, in this case W0 1432.
The output of the multiplexor 1404 is coupled to an operand
input 1406a of the carry-sum adder 1405.
The carry-sum adder 1405 provides for the addition of the

Saturation value and of the lowest order set of bits in the
multiplication (i.e. linear interpolation operation) it is per
forming. A carry out output 1407 and a sum output 1408 of
the carry-saver adder 1405 are coupled to an operand input
A 1412 and an operand input B 1413, respectively, of
carry-sum adder 1414.
The multiplexor 1409 takes as selector input the the

second least significant bit of the Weighting Value, in this
case W11433. The output of the multiplexor 1409 is also an
input to the carry-save adder 1414.
The additive values cascade down the combination of

multiplexors and carry-sum adder devices until multiplexer
1417 is reached. In multiplexer 1417, the input is the most
significant bit of the weighting value, in this case W91434.
Again, input values A 1401 and B 1402 are inputs to the
multiplexor 1417. The output of the multiplexor 1417 is
coupled to a carry-in input 1419 of carry-sum adder 1418. In
accordance with the description of the circuit above, operand
inputs A1420 and operand input B 1421 of carry-sum adder
1418 are coupled to the carry-out output and sum output,
respectively, of a previous carry-sum adder (not illustratcd).
The carry-out output 1423 and sum 1424 of carry-sum adder
1418 are coupled to an operand input B 1426 and operand
input A 1425, respectively, of carry-propagate adder 1422.
The sum output 1429 of the carry-propagate adder 1422 will
be the approximated linearly interpolated value.

5,517,603
37

It should be noted that the above circuit may be used for
determining a linearly interpolated value for data of varied
bit sizes. In the preferred embodiment the weighting value
and inputs A and B are 10 bits in length.

Parallel Rendering Pipelines
The ability to support multiple rendering pipelines in

parallel is inherent in the architecture of the preferred
embodiment of the present invention. First, as parameter
values are directly evaluated, there are no inter scanline
dependencies. Thus, two or more scanlines can be rendered
simultaneously. As described above this scanline indepen
dence also has residual effects in terms of reducing band
width requirements and storage requirements. Second, spe
cific features have been provided to facilitate parallelism.
Some of these features have been described above with
respect to a single pipeline. Here they are described in the
context of parallel rendering pipelines.

It should first be noted that the Parallel Rendering Pipe
lines in the preferred embodiment will receive identical
Active Object Lists. Thus, the control processor must pro
vide an Active Object List that would cover multiple scan
lines. In the preferred embodiment, the Active Object List
may be built by assigning a value to a variable, where the
variable represents the number of scanlines upon which to
build the Active Object List. Having such an Active Object
List means that in some instances, objects will be visible on
one scanline, but not visible on the scanline being simulta
neously rendered. This would occur for example if an object
is last visible on scanline N, where scanlines N and N+1 are
being simultaneously rendered. This may also occur when
an object is first visible on scanline N+1 and thus is not
visible on scanline N. As will be described in more detail
below, the filtering of objects that should not be rendered is
handled in the Stage 1 processing element.
The architecture of the Stage 1 processing element pro

vides for parallel pipelines in the following manner. First,
and perhaps most importantly, as the stage 1 processing
element directly evaluates object information to interpolate
span coordinates, scanline independence is achieved during
vertical interpolation. Scanline independence facilitates the
rendering of scanlines in parallel by eliminating the need for
objects to be rendered in scanline order (as required by
forward differencing interpolation techniques). Second, the
vertical interpolation function filters objects. This is accom
plished by determining if an object is active on the scanline
being rendered. An object is not active on a scanline if there
are no corresponding active edges. If an object is not active
on a particular scanline, it will not be rendered.

Third, to avoid saturating DMA bandwidth between the
active object list and the pipeline, the pipelines are designed
to simultaneously receive objects. As a result, the required
data bandwidth does not increase as parallel pipelines are
added. Fourth, as the pipelines each receive the same object
data, the Stage 1 processing unit of each pipeline must be
able to distinguish which scanline should be rendered.
Accordingly, each stage 1 processing unit defines two input
signals which define the particular pipeline ID. The ID can
be used to load a different Y value into each of the pipeline,
the Y-value indicating the scanline to be rendered.

Finally, the horizontal interpolation of stage 1 supports the
parallel pipelines in that it sets up the direct evaluation of
shading parameter values in succeeding processing stage
elements. The second and third stages of the pipeline per
form the direct evaluation of shading parameters. As noted

10

15

20

25

30

35

40

45

50

55

60

65

38
above, such direct evaluation of shading parameters is
necessary for scanline independence.

With respect to the third/final stage processing element,
besides directly evaluating the shading parameter values, the
output lines of the third stage scanline buffers may be
tristated. This allows the outputlines of the scanline buffers
of multiple pipelines to be connected together. External
control logic provided by, for example the control processor,
would then control which of the scanline buffers would be
in a tristate and which one would be enabled and thus
providing rendered scanlines to the system display buffer.

FIG. 15 is a flowchart illustrating the steps for rendering
a 3D image using multiple parallel pipelines. For this
example there are two parallel pipelines. First, the control
processor sends a direct input stream command to designate
which of the pipelines, the input streams should be sent to,
step 1501. In this case the direct input stream command will
designate both pipelines will receive the input stream (dis
tinguish from step 1507 where input is not sent to both
pipelines). Next, the control processor will send global mode
set-up tokens to designate the desired shading functions,
step 1502. At this point the rendering pipeline is ready to
receive the DRAW commands for drawing the individual
objects.
The contents of the active object list is now sent simul

taneously to each of the rendering pipelines, step 1503. As
noted above this occurs by the issuance of a DRAW com
mand for that object being sent down the pipeline. Next,
rendering occurs, step 1504. This rendering step is identical
to that which would occur for a single pipeline. This
rendering step is identical to the rendering steps described
with respect to FIGS. 8a–8c. Once the rendering process is
completed, the scanout of the rendered scanlines may occur.
The initial step in the scanout process is for the control

processor to determine that a previous scanout is complete.
This is accomplished by the control processor propagating a
scanout synchronization token, step 1505. Once it is deter
mined that the previous scanout is complete, a swap buffers
token is propagated, step 1506. By doing this, the scanout
process can be performed while the rendering of other
scanlines can commence. The control processor then propa
gates a setup/start token to enable the scanout of the ren
dered scanlines, step 1507. The scanout of a scanline buffer
from the first pipeline to the system frame buffer is per
formed, step 1508. To perform this step the scanline buffer
output of the second pipeline is first placed in atristate. Once
this is completed, the scanout of a scanline buffer from the
second pipeline to the system frame buffer is performed, step
1509. To perform this step the output of the first pipeline is
placed in a tristate. It should be noted that the pipeline
scanout sequence may be switched, i.e. the second pipeline
performs the scanout first. Such a switch in the scanout
sequence may be performed without departing from the
spirit and scope of the present invention. As in the case of
a single pipeline, the parallel rendering pipelines may be
rendering subsequent scanlines while scanning out the pre
vious scanlines.

Thus, a scanline rendering device is disclosed. Utilizing a
scanline approach to hardware rendering of graphical
objects, required bandwidth to a system frame buffer is
reduced thus enabling the rendering device to be extensible
to existing computer system designs. Scanline independence
is achieved through direct evaluation of coordinate param
eter values, and enables multiple parallel rendering devices.
Distributed parameter interpolation reduces bandwidth
requirements between shading elements in the rendering

5,517,603
39

device. Finally, a linear interpolation method provides for
the exact calculation at extreme endpoints and allows for
efficient use of data.
We claim:
1. A rendering device for use in a computer system, said

computer system having a system processor, a system frame
buffer and a system bus, said system bus for communicating
information to and from said system processor, said render
ing device comprised of:

a) bus attachment means, said bus attachment means for
coupling to said system bus;

b) a Scanline rendering means coupled to said bus attach
ment means, said scanline rendering means for gener
ating a Scanline of shaded pixel values said scanline
rendering means further including a first object pro
cessing means for identifying a horizontal span of an
object corresponding to a scanline being rendered, said
Scanline rendering means for generating each shaded
pixel value of said shaded pixel values from a corre
sponding token, a first token including a first interpo
lation weight value for a first pixel, said scanline
rendering means for generating a first Z-value from
said first interpolation weight and Z-values for end
points of said horizontal scan, said scanline rendering
means further including a means for determining
whether said first token should be converted to a null
token based upon said first Z-value; and

c) a system frame buffer coupling means coupled to said
Scanline rendering means, said system frame buffer
coupling means for transferring said scanline of shaded
pixel values to said system frame buffer.

2. The rendering device as recited in claim 1 wherein said
scanline rendering means is comprised of:

a) a front-end processor for generating an active object list
of graphical objects that are active on a scanline being
rendered;

b) a first object processing means for identifying horizon
tal spans of an object corresponding to a scanline being
rendered; and

c) a pixel shading means for generating a pixel shading
value for a pixel.

3. The rendering device as recited in claim 2 wherein said
scanline rendering means is further comprised of a pixel
compositing means for generating blended pixel values
using all objects being active for said scanline being ren
dered.

4. The rendering device as recited in claim 1 wherein said
Scanline rendering means is comprised of:

a) graphical object input means, said graphical object
input means for receiving an active object list from said
system processor, and

a pixel shading means for generating a pixel shading
value for a pixel.

5. The rendering device as recited in claim 4 wherein said
scanline rendering means is further comprised of a pixel
compositing means for generating blended pixel values
using all objects being active for said scanline being ren
dered.

6. The rendering device of claim 1 wherein said scanline
rendering means is further for determining activation infor
mation for an object received by said bus attachment means,
and for causing said activation information to be transmitted
to said system processor.

7. The rendering device of claim 6 wherein said computer
System includes a memory, coupled to said system proces
sor, for storing said activation information, and

10

15

20

25

30

35

40

45

50

55

60

65

40
wherein said system processor causes said activation

information to be stored in said memory, and wherein
said system processor accesses said activation infor
mation from said memory, and wherein said scanline
rendering means generates said scanline according to
said activation information.

8. Arendering device for rendering 3-D graphical images,
Said rendering device coupled to a computer system, said
computer system having a system processor, a database
having a plurality of graphical objects, a display and a
system frame buffer, said system frame buffer containing
pixel shading values, said rendering device providing pixel
shading values to said system frame buffer, said rendering
device comprised of:

a) A processor coupling means, said processor coupling
means for coupling said rendering device to said sys
tem processor,

b) a scanline rendering means for generating a scanline of
pixel shading values from a plurality of graphical
objects, said Scanline rendering means including an .
span identifying means for identifying at least a first
span of an object corresponding to a scanline being
rendered, said Scanline rendering means for generating
each shaded pixel value of said shaded pixel values
from a corresponding token, a first token including a
first interpolation weight value for a first pixel, said
Scanline rendering means for generating a first Z-value
from said first interpolation weight and Z-values of
endpoints of said first span, said scanline rendering
means for determining whether said first token should
be converted to a null token based upon said first
Z-value, and

c) a Scanout means for transferring a scanline of rendered
pixels to said system frame buffer.

9. A rendering device comprising:
a) a bus communications circuit, for communicating data

with a host processor;
b) a Scanline rendering circuit, being coupled to said bus

communications circuit, for identifying a horizontal
span of a scanline for an object, said scanline rendering
circuit further for generating pixel values for said
scanline, said scanline rendering circuit being coupled
in communication with a Z-buffer, said scanline ren
dering circuit for determining a Z-value for a pixel
from Z-values of endpoints of said horizontal span and
a weight in a corresponding pixel token, said scanline
rendering circuit for converting said pixel token to a
null token if said Z-value is greater than a Z-value at a
corresponding pixel location in said Z-buffer, and

c) a frame buffer communications circuit, being coupled
to said scanline rendering circuit, for communicating
said pixel values for a scanline to a frame buffer.

10. The rendering device of claim 9 wherein said scanline
rendering circuit includes a front-end processor, said scan
line rendering circuit, using said front-end processor, is
further for generating activation information for an object
received by said scanline rendering circuit and for causing
said activation information to be communicated to said host
processor.

11. The rendering device of claim 10 wherein said scan
line rendering circuit includes a rendering pipeline, being
coupled to said front-end processor, for generating said pixel
values, and wherein said front-end processor is further for
generating an active object list and control signals for
controlling said rendering pipeline.

12. The rendering device of claim 11 wherein said scan
line rendering circuit includes a memory for storing said

5,517,603
41

active object list, said memory being coupled to said front
end processor and said rendering pipeline.

13. A system for rendering objects in a 3D object data
base, comprising:

a) a host processor, for managing said 3D object database, 5
for generating an activation list from said 3D object
database, and for generating an active object list from
said 3D object database;

b) a bus communications circuit, being coupled in com
munications with said host processor, for communicat
ing data with said host processor;

c) a first rendering pipeline, being coupled to said bus

42
14. The system of claim 13 further comprising a second

rendering pipeline, being coupled to said bus communica
tions circuit for generating scanline pixel shading values
responsive to receiving an object in said active object list,
and wherein said frame buffer communications circuit is
coupled to said second rendering pipeline.

15. A rendering device for use in a computer system, said
computer system having a system process, a system frame

10 buffer and a system bus, said system bus for communicating
information to and from said system processor, said render
ing device comprised of:

communications circuit, for generating scanline pixel
shading values responsive to receiving objects in said

a) a bus attacher for coupling to said system bus;
active object list; 15 b) a scanline renderer coupled to said bus attacher, said

d) a horizontal interpolation circuit for identifying spans scanline enderer for generating al scanline of shaded
of pixels of each object in an active object list, each pixel values, said scanline renderer further including a
horizontal span being identified by a pair of end coor- first object processor for identifying a horizontal span
dinates and a corresponding Z pair, said horizontal 20 of an object corresponding to a scanline being rendered
interpolation circuit for generating a plurality of pixel and a Zpair for endpoints of said horizontal span, said
interpolation tokens from each horizontal span, each scanline renderer being coupled to a Z-buffer, said
pligion token including a shaded color value scanline renderer for generating a pixel interpolation

ken f h pixel. wherein said interpolation tok
e) a hidden surface removal circuit, using said plurality of 25 to d O cac R d A. said d E. alO I CI

pixel interpolation tokens, for generating pixel shading 1C es a. weig y sa scanline renderer for converting
values and a Z-value for each of said plurality of pixel a first pixel interpolation token to a first null token after
interpolation tokens from said weight and said Z. pair, determining that a Z-value for said first pixel interpo
said hidden surface removal circuit being coupled to a lation token is greater than a Z-value of a correspond
Z-buffer, said hidden surface removal circuit for con- 30 ing pixel in said Z-buffer, wherein said Z-value is
verting a first pixel interpolation token to a first null computed using said weight and said Z. pair, said
token after determining that said Z-value for said first derer f id shaded pixel val pixel interpolation token is greater than a Z-value of a Scanline renderer for generating Sald Shaded pixel val
corresponding pixel in said Z-buffer; ues from non-null pixel interpolation tokens; and

f) a frame buffer for storing and providing pixel shading 35 c) a System frame buffer coupler to said Scanline renderer,
values: and

g) a frame buffer communications circuit, being coupled
to said first rendering pipeline and said frame buffer, for
communicating said scanline pixel shading values to
said frame buffer.

said system frame buffer coupler for transferring said
scanline of shaded pixel values to said system frame
buffer.

