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57) ABSTRACT 

A rendering device for providing 3-D graphics rendering in 
a computer system. A hardware scanline rendering approach 
is utilized. Using a hardware scanline rendering approach 
the bandwidth requirements between a system frame buffer 
and the rendering device are minimized. The minimization 
of bandwidth requirement allows for the rendering device to 
be used with existing computer system designs while keep 
ing design changes at a minimum. The result is that for a 
given desired performance of a combined computer system 
and rendering device, the cost of both the computer system 
without the rendering device, and the cost of the rendering 
device itself may be reduced. The rendering device is 
generally comprised of a bus attachment for coupling to the 
system bus of the computer system; a scanline rendering 
device and a scanout device for transferring the scanline of 
shaded pixel values to the system frame buffer. 

15 Claims, 20 Drawing Sheets 
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SCANLINE RENDERING DEVICE FOR 
GENERATING PXEL VALUES FOR 
DISPLAYING THREE-DMENSIONAL 

GRAPHICAL MAGES 

This is a continuation of application Ser. No. 07/811,796, 
filed Dec. 20, 1991, now abandoned. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to the field of computer 

controlled display systems, in particular, devices for render 
ing pixels for displaying 3-dimensional graphical images. 

2. Description of the Related Art 
As the processing capability of computer systems has 

grown, so have the ways of displaying data generated by the 
computer systems. Many vocations now use computer sys 
tems as a fundamental tool. For example, in the area of 
architectural design, 3-Dimensional graphical images (or 
3-D images) of buildings or other structures are dynamically 
created and manipulated by a user. A computer system is 
able to capture and process data in order to display the 3-D 
image, in a time that is much faster than could be done 
manually. As computer hardware technology has advanced, 
so has the development of various methods, techniques and 
special purpose devices for rapidly displaying and manipu 
lating 3-D images. 
A 3-D image is represented in a computer system as a 

collection of graphical objects. Generally, there are two 
known approaches to providing high performance genera 
tion of 3-D images. A first approach focuses on rapidly 
drawing the graphical objects that comprise the 3-D graphics 
image. This approach is referred to hereinafter as the object 
approach. The object approach embodies a hidden surface 
removal algorithm commonly known as the screen Z-buffer 
algorithm. A second approach looks to processing the 
graphical objects with respect to the scanlines on which they 
would appear on a display. The second approach is referred 
to hereinafter as the scanline approach. The two approaches 
involve certain trade-offs. These trade-offs include cost, 
performance, function, quality of image, compatibility with 
existing computer systems and usability. 
As mentioned above, a 3-D image will be represented in 

a computer system as a collection (or database) of graphical 
objects. The database may have been created through the use 
of any of a number of commercially available application 
software packages. The database may be in any of a number 
of standard graphics formats (e.g. PHIGS or GKS). It is 
common that the 3-D graphical objects are polygons (e.g. 
triangles) or some other high level object. The process of 
transforming a collection of graphical objects into a 3-D 
image is termed rendering. Literally, the rendering process 
takes object information and converts it to a pixel represen 
tation. It is in the rendering process where the object and 
scanline approaches differ. 

In the object approach, the majority of the function related 
to the rendering process is performed by specially designed 
graphics accelerators. These graphics accelerators perform 
the necessary operations to create the pixel representation of 
the objects. The pixel representation may then be used by a 
display system to "draw' the graphical object on a display 
screen. A schematic of the object approach is illustrated in 
FIG. 1. In FIG. 1, a general purpose host computer 101 is 
used to maintain and create a 3-D Object Database 102. As 
described above, the 3-D Object Database contains the 3-D 
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2 
Objects which comprise the 3-D image. Coupled to the host 
processor 101 is a system frame buffer 106. The system 
frame buffer 106 is further coupled to the display 105. The 
system frame buffer 106 contains the data, e.g. RGB values, 
for each pixel in the display 105. 
The primary components of the object approach are 

embodied in the graphics accelerator processor 103 and the 
screen Z-Buffer 104. The graphics accelerator processor 103 
performs various graphical functions such as transforma 
tions and clipping. The screen Z-Buffer 104 is used for 
hidden surface removal. During the rendering process for a 
graphical image, the rendered pixels are transferred to the 
system frame buffer 106. 

Using the object approach, each of the 3-D objects in the 
database 102 is rendered individually. Using a triangle 
object as an example, the rendering process generally 
involves the following steps, and is illustrated in FIGS. 
2a-2c, 

1. Derive a 2-D triangle from the graphical object defi 
nition. The transformation step, as illustrated in FIG. 2a, 
results in a triangle 201 with vertices. A 202, B 203 and C 
204. 

2. Perform any necessary dipping of the object. Clipping 
refers to removing portions of the object that are not within 
the bounds of a predetermined viewing area. 

3. Generate horizontal spans for the object. A horizontal 
span refers to a portion of the object that intersects a 
scanline. A span is comprised of one or more pixels. For 
example, in FIG.2b, see span 209. Typically this occurs 
through a linear vertical interpolation of the object. 

4. Generate values for each of the pixels in the span. This 
process is commonly referred to as horizontal interpolation. 
FIG. 2c illustrates horizontal interpolation. This step will 
include such functions as shading of the pixels, hidden 
surface removal and storing the pixel values into a screen 
RGB frame buffer. 

5. Repeat steps 3 and 4 until the object has been rendered. 
6. Repeat steps 1, 2, 3, 4, and 5 until all the objects have 

been rendered. 
The Step 1 derivation of a 2-D triangle is needed in order 

to map into the two-dimensional coordinate systems that are 
typically used by known display systems. The third coordi 
nate of a 3-D graphical object is depth (e.g. “Z value'), and 
is used to determine whether or not the object is behind 
another object and thus out of view (i.e. hidden). 

Vertical interpolation, as described in Step 3 above, is 
illustrated in FIG. 2b. Vertical interpolation is typically 
performed in the following fashion. First, active edges are 
determined. An active edge is defined as an edge of the 
object that intersects a scanline that is being processed. A 
span is defined as the pixels on the scanline that would 
connect the two intersection points of the active edges. The 
triangle 201 is comprised of edges 205, 206 and 207. The 
edge 205 is defined by the segment connecting vertices A 
202 and B 203, the edge 206 is defined by the segment 
connecting vertices A 202 and C 204 and the edge 207 is 
defined by the segment connecting vertices B 203 and C 
204. Generally, for any particular scanline, there will be 2 
active edges. The exception being when an edge is horizon 
tal. For example, in FIG. 2b, for scanline 208, the active 
edges are 205 and 206. Thus, for scanline 208, there is a span 
209 for object 201. 
The next step is to determine the coordinates of the 

end-points 210 and 211 of span 209. First it must be 
understood that each active edge is simply a line. Thus, the 
difference between successive points in the line are linear. 
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As the vertical ordinate is simply the current scanline, only 
the horizontal ("X") value need be calculated. Typically, this 
is done using a forward differencing calculation. In forward 
differencing a constant, say Apis determined that is between 
each horizontal coordinate (e.g. using the formula Ap=P1 
PO/Y1-Y0, where P1 and P0 are pertinent pixel values, such 
as “R” of RGB, at Y1 and Y0 for the respective end-points 
of an edge). Thus, the horizontal coordinate value may be 
determined by simply adding Ap to the previous correspond 
ing coordinate value. It is known that using forward differ 
encing makes other techniques of improving rendering per 
formance, e.g. parallel processing, more difficult. 
A non-desirable aspect of the forward differencing tech 

nique is that a high number of bits are required to be stored 
and propagated in order to retain the necessary numerical 
precision needed for graphics applications. This is a tradeoff 
to eliminating certain operations, namely division opera 
tions, that would otherwise be required in the vertical 
interpolation process. 

Referring to FIG. 2c, shading the pixels in span 209 is 
then performed. Shading refers to establishing the values for 
the pixels comprising the span 209. The coordinates of the 
successive pixels on the span may be determined through the 
means such as a counter. Horizontal interpolation to deter 
mine shading values for each of the pixels may occur using 
either linear interpolation or perspective corrected interpo 
lation. In any event, as the values for a pixel 212 are 
determined, the values for subsequent pixels, e.g. pixel 213 
can be estimated through horizontal interpolation. 
As noted above, the object approach generally utilizes the 

screen Z-Buffer algorithm. The screen Z-Buffer algorithm 
provides for hidden surface removal. Hidden surface 
removal is necessary for the display of 3-D images, since the 
surfaces in view depend on the vantage point from the 
viewing direction and refers to the "hiding' of areas of an 
object that are "behind' another object. The hidden surface 
removal Z-Buffer algorithm is known in the art and requires 
a local frame buffer. The screen contains the pixel values of 
objects as they are rendered. As the location of any object 
may be anywhere on the screen, the local frame buffer must 
have enough storage to support the display of all pixels on 
the display. Once all the objects have been rendered, the 
local frame buffer is transferred to the system frame buffer 
for display. 
The Z-Buffer method utilizes the fact that each object has 

an attribute, typically called a Z-value, which is a 3rd 
dimensional ordinate. A low Z-value indicates that the object 
(or portion of the object) is closer to the viewer than an 
object with a high Z-value. The Z-Buffer stores a Z-value for 
each pixel on a display. During the rendering process, the 
Z-value of a pixel being processed is compared to Z-value 
in a corresponding location in the Z-buffer. If the Z-value of 
the pixel being processed is smaller than the value in the 
corresponding location in the Z-buffer, then the Z-value of 
the pixel being process is placed in the corresponding 
location in the Z-buffer. Additionally, the pixel value of the 
pixel being processed will be placed in the screen frame 
buffer, since is is now the "closest' to the viewer. 
Some of the tradeoffs of object/z-buffer rendering include: 

the requirement of Z-buffer memory, screen frame buffer 
memory (in addition to a system frame buffer), and the 
difficulty in building a modular type of system due to a 
constraint of the Z-Buffer memory needing to be close to the 
screen buffer. As a result of such hardware requirements, the 
object approach can be a costly approach. 

In the scanline approach the 3-D image is rendered a 
Scanline at a time, rather than an object at a time. Thus, all 
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4 
objects intersecting a particular Scanline are processed 
before writing to the scanline location in the frame buffer. 
The scanline approach utilizes two passes. In the first pass, 
3-D objects are transformed into 2-D objects and a scanline 
object activation list is built. In the second pass, each of the 
scanlines are rendered. The flow of the scanline approach is 
illustrated in FIG. 3a. As in hardware rendering, transfor 
mation of the 3-D objects into 2-D objects occurs, step 30. 
Concurrent with the step 301, an Object Activation Database 
is built, step 302. The steps 301 and 302 comprise the first 
pass. 
The Object Activation Database provides, for each scan 

line, a list of objects which first become active on that 
Scanline. By becoming active, that object may be displayed 
on that scanline. This typically occurs by identification of 
the highest point of an object (i.e. its lowest Y-coordinate), 
and assigning it to the activation list of the corresponding 
scanline. The relationship of the Object Activation Database 
to the displayed objects is illustrated in FIG. 3b. In FIG. 3b 
a display screen 320 is 9 scanlines high. The scanlines 0-8 
are numbered from low to high down the left hand side of 
the display screen 320. Objects A321, B 322 and C323 are 
to be displayed on the display screen 320. It is apparent that 
Object A321 has a highest point 326 (which is on scanline 
5), Object B 322 has a highest Point 324 (which is on 
scanline 1) and Object C 323 has a highest Point 325 (also 
on scanline 1). 

Still referring to FIG. 3b, the resulting Object Activation 
List Database 329 is illustrated. As the points 324 and 325 
are on scanline 1, a scanline 1 entry 327 contains the 
corresponding objects, namely Object B 322 and Object C 
323. Additionally, a scanline 5 entry 328 contains the Object 
A 321. 

Referring back to FIG. 3a, once the Object Activation 
Database 329 is generated and all the 3-D Objects have been 
transformed, an Active Object List is created, step 303. The 
Active Object List provides a source of identifying for the 
scanline being processed, the objects which are active (i.e. 
portions of which are displayable on that scanline). The 
Active Object List may contain either descriptive informa 
tion of the 2-D object (e.g. coordinate information and 
shading parameter values) or may contain information defin 
ing the active edges of the 2-D object (also including 
shading parameter values). FIG.3c illustrates the contents of 
an Active Object List 340 with respect to the screen and 
Object Activation List 329 of FIG.3b. In Active Object List 
340, a scanline 1 entry 341 contains the objects B and C. The 
objects B and C remain as an entry for scanlines 2-5. In 
scanline 5 entry 342, object A is included (as this is where 
the object A is first displayed). As objects B and C are no 
longer displayed after Scanline 5, they are not in a scanline 
6 entry 343. The entries for scanlines 6-8 are comprised 
solely of object A. Rendered Screen 345 illustrates how the 
objects would be rendered. 

Referring back to FIG.3a, once the object Activation List 
is created, the rendering process begins, step 304. As with 
hardware rendering, the next steps include 1) vertical inter 
polation, to determine the coordinates (and shading param 
eters of the coordinates) of a horizontal span that corre 
sponds to a particular object on a particular scanline, and 2) 
horizontal interpolation, for determining the individual pixel 
values for the pixels within the span. Vertical interpolation 
occurs for every active object on a scanline. Once the 
coordinates for the horizontal span and corresponding shad 
ing parameters have been determined, vertical interpolation 
is completed and horizontal interpolation begins. When all 
the pixels in the span have been shaded, horizontal interpo 
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lation for the span is completed. This shading process is 
embodied in step 304. Step 304 is repeated for all the objects 
on the active object list. Finally, a test is made to determine 
if the last scanline has been processed, step 305. If the final 
scanline has not been processed, the active object list is 
updated to reflect the active objects for the next scanline, 
step 306. The step 306 is generally identical in function to 
step 303. If the last scanline has been processed, the pro 
cessing for that graphical image is complete. The steps 
303-306 comprise the second pass. 
An important distinction between the vertical interpola 

tion process in the scanline approach and the object 
approach is that in the scanline approach portions of mul 
tiple objects are rendered at one time. Thus, appropriate 
storage is required to retain all the forward differencing 
information that will be used as all the objects are being 
interpolated. For example, if 10 units of storage are required 
for storing the forward differencing information for one 
object, 50 units of storage are required for storing the 
forward differencing information for 5 objects. Additionally, 
since forward differencing is being used, there is an inter 
scanline dependence so that the scanlines must be processed 
in sequential order. 

Scanline rendering provides benefits over object render 
ing that include eliminating the need for a frame Z-Buffer 
and a screen RGB Buffer, each of which usually are the size 
of the display. 
A known system that utilized scanline rendering in com 

bination with a pipelined object approach is discussed in the 
publication "Computer Graphics Principles and Practice 
Second Edition' by Foley, VanDam, Feiner and Huges 
published by the Addison Wesley Publishing Corporation at 
Pages 885-886. The system described provides separate 
processing units for creating an Object Activation Database, 
Active Object List, Visible Span Generation (i.e. Vertical 
Interpolation) and Pixel Shading (i.e. Horizontal Interpola 
tion). However, the system as described did not provide for 
parallel pipelines. 

Aparallel pipeline system was described in the aforemen 
tioned "Computer Graphics Principles and Practice Second 
Edition” publication at Pages 899–900. The system 
described utilized a technique termed object-parallel raster 
ization. In this system multiple objects are processed in 
parallel. 
The tradeoffs discussed above were often premised on an 

idea that it is desirable to minimize the number of compu 
tations that need to be performed. An example is the forward 
differencing technique for linear interpolation. In order to 
minimize division operations, a larger amount of data must 
be moved and stored through the system. With the matura 
tion of semiconductor technology, the cost of circuitry to 
perform logic operations has decreased. Thus, it has become 
viable to design systems that utilize processing power and 
minimize memory. This is especially desirable when space 
is a consideration, since storage tends to take up a sizable 
amount of valuable space on an electrical circuit. 
As described above, known rendering systems typically 

perform a high number of linear interpolations. It would be 
desirable to provide a method and means where these linear 
interpolations may be performed in an efficient manner. 
Known high quality 3-D rendering systems are inherently 

expensive and incapable of incorporating new functionality 
without significant re-design of the inherent architecture of 
the rendering system. It would be desirable to provide a 
rendering system that is scalable to user needs. It is an object 
of the present invention to provide such a system. 

It is a further object of the present invention to provide an 
interpolation means that does not present the bandwidth, and 
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6 
data storage requirements associated with forward differ 
encing based techniques. 

It is a further object of the present invention to increase 
rendering performance of graphical images through the 
rendering of multiple scanlines, without requiring a multiple 
increase in data bandwidth requirements. 

SUMMARY 

A rendering device for providing 3-D graphics rendering 
in a computer system, is disclosed. Utilizing a scanline 
approach for rendering a 3-D graphical image, alternative 
rendering device configurations provide scalable rendering 
performance. By minimizing the bandwidth requirement 
between the rendering device and a system frame buffer, the 
rendering system can be added to existing computer system 
designs while minimizing the changes to the design. The 
result is that for a given desired performance of a combined 
computer system and rendering device, the cost of both the 
computer system without the rendering device, and the cost 
of the rendering device itself may be reduced. 
The rendering apparatus of the preferred embodiment is 

generally comprised of bus attachment means for coupling 
to the system bus of the computer system; a scanline 
rendering means and a scanout means for transferring the 
scanline of shaded pixel values to the system frame buffer. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic drawing of a prior art rendering 
system. 

FIG. 2a illustrates the representation of an object as a 
triangle, 

FIG.2b illustrates a triangle mapped to a display screen. 
FIG.2c illustrates pixels in a horizontal span of a triangle 

when mapped to a display screen. 
FIG. 3a is a flowchart illustrating a prior art scanline 

method for rendering a 3-D image. 
FIG. 3b illustrates an Object Activation Database as 

utilized in a prior art scanline method for rendering a 3-D 
image. 

FIG. 3c illustrates an Active Object List as utilized in a 
prior art scanline method for rendering a 3-D image. 

FIG. 4 illustrates a computer system as may be utilized by 
the preferred embodiment of the present invention. 

FIG. 5 illustrates a graphics accelerator coupled to a 
computer system and a display device as may be utilized by 
the preferred embodiment of the present invention. 

FIG. 6a illustrates a first graphics accelerator architecture 
as may be utilized by the preferred embodiment of the 
present invention. 

FIG. 6b illustrates a second graphics accelerator architec 
ture as may be utilized by the preferred embodiment of the 
present invention. 

FIG. 7 illustrates a graphics pipelines as may be utilized 
by the preferred embodiment of the present invention. 

FIG. 8a is a flowchart of the flow of operation for a stage 
1 (of FIG.7) as may be utilized by the preferred embodiment 
of the present invention. 

FIG. 8b is a flowchart of the flow of operation for a stage 
2 (of FIG.7) as may be utilized by the preferred embodiment 
of the present invention. 

FIG. 8c is a flowchart of the flow of operation for a stage 
3 (of FIG.7) as may be utilized by the preferred embodiment 
of the present invention. 
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FIG. 9 illustrates an example of Vertical Interpolation in 
the preferred embodiment of the present invention. 

FIG. 10 illustrates an example of Horizontal Interpolation 
in the preferred embodiment of the present invention. 

FIG. 11 illustrates the functional blocks of the Stage 1 
processing unit as may be utilized,by the preferred embodi 
ment of the present invention. 

FIG. 12 is a schematic functional diagram of a Stage 2 
and/or Stage 3 processing unit as may be utilized by the 
preferred embodiment of the present invention. 

FIG. 13 is a schematic representation of a circuit for 
determining the pixel interpolation weight as may be utilized 
by the preferred embodiment of the present invention. 

FIG. 14a is a schematic representation of a circuit for 
calculating a linear interpolation value as may be utilized by 
the preferred embodiment of the present invention. 

FIG. 14b illustrates the bit positions of a weighting value 
as may be utilized by the preferred embodiment of the 
present invention. 

FIG. 15 is a flowchart illustrating the processing flow of 
multiple parallel rendering pipelines as may be utilized in 
the preferred embodiment of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

A method and apparatus for rendering multiple scanlines 
in a computer controlled display system is described. In the 
following description, numerous specific details are set forth 
such as data structures, in order to provide a thorough 
understanding of the present invention. It will be apparent, 
however, to one skilled in the art that the present invention 
may be practiced without these specific details. In other 
instances, well-known circuits, control logic and coding 
techniques have not been shown in detail in order not to 
unnecessarily obscure the present invention. 

Overview of the Computer System of the Preferred 
Embodiment 

The computer system of the preferred embodiment is 
described with reference to FIG. 4. The present invention 
may be implemented on a general purpose microcomputer, 
such as one of the members of the Apple() Macintosh(E) 
family, one of the members of the IBM Personal Computer 
family, or one of several work-station or graphics computer 
devices which are presently commercially available. In any 
event, a computer system as may be utilized by the preferred 
embodiment generally comprises a bus or other communi 
cation means 401 for communicating information, a pro 
cessing means 402 coupled with said bus 401 for processing 
information, a random access memory (RAM) or other 
storage device 403 (commonly referred to as a main 
memory) coupled with said bus 401 for storing information 
and instructions for said processor 402, a read only memory 
(ROM) or other static storage device 404 coupled with said 
bus 401 for storing static information and instructions for 
said processor 402, a data storage device 405, such as a 
magnetic disk and disk drive, coupled with said bus 401 for 
storing information and instructions, an alphanumeric input 
device 406 including alphanumeric and other keys coupled 
to said bus 401 for communicating information and com 
mand selections to said processor 402, a cursor control 
device 407, such as a mouse, track-ball, cursor control keys, 
etc, coupled to said bus 401 for communicating information 
and command selections to said processor 402 and for 
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8 
controlling cursor movement. Additionally, it is useful if the 
system includes a hardcopy device 408, such as a printer, for 
providing permanent copies of information. The hardcopy 
device 408 is coupled with the processor 402 through bus 
401. 

Also coupled to the computer system of the preferred 
embodiment is a frame buffer 409 which is further coupled 
to a display device 410, preferably a display device capable 
of displaying color graphics images. The frame buffer 409 
contains the pixel data for driving the display device 410. 
The display device 410 would be further coupled to a 
rendering device 411, also known as a graphics accelerator. 
Typically, such a rendering device 411 is coupled to the bus 
401 for communication with the processor 402 and frame 
buffer 409. The preferred embodiment is implemented for 
use on a Macintosh computer available from Apple Com 
puter, Inc. of Cupertino, Calif. 

FIG. 5 illustrates in more detail, a rendering device as 
coupled to a host computer system in the preferred embodi 
ment. First, a host computer system 550 is coupled to a 
frame buffer 551 and a rendering device 555. The host/frame 
buffer coupling 552 is an optional coupling when the ren 
dering device is installed. Such a coupling may be desirable 
in instances where the rendering device 555 is not being 
utilized, e.g. when the application being executed does not 
require the display of 3-D graphical images. 
The host/rendering device coupling 553 is typically 

through a means such as the bus 401, described above with 
reference to FIG. 4. The rendering device/frame buffer 
coupling 554 is also typically over a DMA means. The 
information flowing over this coupling will typically consist 
of pixel data of images or scanlines that have already been 
rendered. Finally, the frame buffer 551 is coupled to the 
display device 556, wherein pixel data to drive the presen 
tation of the graphical image is stored. 
The rendering device of the preferred embodiment oper 

ates with display systems with fast raster support. Fastraster 
support refers to raster scan display systems where the frame 
buffer 551 can accept incoming scanlines of display data at 
high speed. Besides graphics applications, fast raster support 
is typically used for applications such as display of video 
data. Thus, the system of the preferred embodiment is 
compatible with systems that have support for video appli 
cations. 

As will be described in more detail below, the preferred 
embodiment of the present invention utilizes a scanline 
approach to rendering. From a computer system design 
standpoint, the principle advantages in utilizing a scanline 
approach are the reduction of bandwidth between the graph 
ics accelerator and the host/frame buffer, reduced require 
ments for low latency communication between the graphics 
accelerator and the host/frame buffer, and increased coher 
ence of the data transferred from the graphics accelerator 
and the host/frame buffer. Moreover, for a given desired 
performance of the combined computer system and graphics 
accelerator, these advantages reduce both the cost of the 
computer system without the graphics accelerator, and the 
cost of the graphics accelerator itself. 

Shading Algorithm of the Preferred Embodiment 

Before a pixel is shaded, it must be determined whether 
it is front most. As will be described in detail below, this 
occurs in the preferred embodiment through a scanline 
Z-Buffer algorithm. Once it is determined which pixels of an 
object are visible, a shading algorithm is used to determine 
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pixel values (i.e. their color). Typically, the shading algo 
rithm will take into account material properties of the object 
surface and the sources of light in the scene to determine the 
color of the pixel. In the preferred embodiment, a Phong 
Shading is performed at the endpoint vertices of a span while 
Gouraud shading is performed for the pixels across the span. 
Material properties in the preferred embodiment include a 
diffuse RGB color, specular power (shininess), specular 
RGB color and surface normal. Light sources in the pre 
ferred embodiment include an infinite light source and an 
ambient light source. Finally, in the preferred embodiment, 
shading is based on a diffuse reflection model with the 
option of adding a specular reflection model. 
The color of a particular pixel in an object can be most 

accurately calculated as the sum of the diffuse, specular, and 
ambient contributions for each of the color components. The 
specific diffuse color component, in this case the color red, 
is calculated by the formula: 

Diffuse Color=L, KCL-N) 

where L is the red color component of the (point) light 
source, K is the diffuse red component of the surface, L is 
the light vector, and N is the normal to the surface. All 
vectors are normalized. The calculation is repeated for each 
color component. 

Specular reflection describes the light reflected from shiny 
surfaces. The specular color is determined by the product of 
the light and the specular color of the surface attenuated by 
the angle between the direction of the viewpoint and the 
reflection of light. Highlights are described by specular 
reflection. The red component of a the color of a pixel due 
to specular reflection is calculated by the equation: 

Specular Color=LK (R-V)" 

where L is the intensity of the red component of the (point) 
light source, K is the red component of the specular color, 
R is the reflection of the light vector off of the surface, and 
V is the reversed eye vector (the vector from the surface to 
the eye), and n is the specular reflection coefficient (i.e. the 
specular power). All vectors are normalized. 
The ambient color contribution is calculated by the equa 

tion: 

Ambient Color=LK 

where L is the intensity of the ambient light source and k. 
is the ambient color of the surface. 

For each of the above color contribution components 
RGB, the calculations are repeated. The method of the 
preferred embodiment calculates pixel values in this fashion. 
However, as objects only have such RGB values defined at 
vertex points, interpolation techniques are used to determine 
values at points within the object. It is such an interpolation 
technique for determining pixel values that is implicit in the 
rendering architecture of the preferred embodiment. 

Although the preferred embodiment utilizes a technique 
with Phong shading at the vertices coupled with Gouraud 
interpolations, it would be apparent that other shading 
techniques may be used. Such alternative shading tech 
niques include, but are not limited to full Gouraud Shading 
or Torrence-Sparrow shading. 

Rendering Architecture of the Preferred 
Embodiment 

The rendering architecture of the preferred embodiment is 
premised on a scanline algorithm. As described with refer 
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10 
ence to prior art systems, the scanline algorithm renders an 
image by scanline. Briefly, the scanline algorithm is a two 
pass algorithm. The first pass is used to set up databases of 
information that are used to drive the actual scanline ren 
dering process. In the first pass, a 2-D object is derived from 
each 3-D object in a 3-D object database. During this 
process, the scanline upon which the object would first be 
displayed (first in the sense of the order of drawing scanlines 
to the display device), i.e. become "active", is determined. 
This information is used to create an Object Activation 
Database, where the entries in the database define the objects 
that become "active' on a particular scanline. 

In the second pass, the Object Activation Database is used 
to create a dynamic list of objects which are "active' on the 
scanline(s) currently being rendered. This list is called the 
Active Object List. The Active Object List is then provided 
to shading means which create the pixel values for the 
scanline(s) currently being rendered. The Active Object List 
is updated as objects become "active' or "inactive' on the 
scanline(s) to be rendered next. 

It is known to those skilled in the art that an object may 
typically be represented by a data structure which contains 
coordinate information and shading parameter values. In the 
preferred embodiment, a triangle object is represented by 3 
coordinate points, where each of the coordinate points has 
shading parameter values. The segments which interconnect 
the 3 coordinate points define the bounds of the triangle. 
Further in the preferred embodiment a quadrilateral object is 
definable. A quadrilateral will be similarly defined, except 
that it will define 4 coordinate points (each with correspond 
ing shading parameter values). In the preferred embodiment, 
a quadrilateral may be provided to the rendering pipeline, 
but it would be converted into a pair of triangles for 
rendering (each utilizing 3 of the 4 coordinate points). 

Alternative systems hardware schematics as may be uti 
lized by the preferred embodiment are illustrated in FIGS. 
6a and 6b. Referring to FIG. 6a, a host computer 601, e.g. 
a microprocessor, is coupled to a graphics accelerator 604 so 
that certain functions in the rendering process are carried out 
by the host and the accelerator. The host computer 601 
maintains a 3-D Object Database 603 and creates an Object 
Activation Database 602. As described above, the 3-D 
Object Database 603 contains a list of the 3-D objects which 
comprise the 3-D Graphical Image, while the Object Acti 
vation Database 602 contains a list for each scanline, of the 
objects which are first displayed on that scanline. 
The graphics accelerator 604 is comprised of front-end 

processors 605 and rendering pipelines 607. The front-end 
processors 605 perform a plurality of functions in the 
rendering process. First, with respect to the first pass of the 
scanline algorithm, the front-end processors 605 perform 
clipping and transformation functions and provide the Host 
computer 601 with information for each object indicating 
the scanline on which the object first becomes active. With 
respect to the second pass, the front-end processors 605 
receive 3D-object information from the Host computer 601 
to create an Active Object List 606. The Active Object List 
606 identifies objects which are “active' or to be drawn, on 
the particular scanline being processed. The front end pro 
cessor 605 also provide control instruction to the rendering 
pipelines 607. Such control instructions are in the form of 
control tokens, and are discussed in greater detail below. The 
front end processors 605, are preferably floating point pro 
cessors or Reduced Instruction Set Computer (RISC) pro 
CCSSOS. 

Also illustrated in FIG. 6a is a transformation database 
608. The transformation database 608 is used as a matter of 
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convenience to resolve object accessing problems that occur 
due to the data structures used in creating the transformation 
matrices when transforming 3-D Objects to 2-Dimensional 
Objects. 

Finally, the graphics accelerator includes one or more 
rendering pipelines 607. The rendering pipelines receive 
control information from the front-end processors 605 and 
the object information from the active object list 606 to 
perform the actual calculating of pixel values for each pixel 
in a scanline. The rendering pipelines 607 are discussed in 
greater detail below. 
An alternative implementation is illustrated in FIG. 6b. 

The primary difference between this alternative implemen 
tation and that illustrated in FIG. 6b is the elimination of 
front-end processors and separate storage means for the 
transform database and Active Object List. Referring to FIG. 
6b, the host processor 620 performs the functions of the 
front-end processors 605 of FIG. 6a. Likewise, transform 
database 623 and Active Object List 624 are coupled to and 
maintained by host processor 620. The host processor 620 
then provides the contents of the Active Object List to one 
or more rendering pipelines 625, for rendering. 
The embodiment illustrated in FIG. 6b is desirable in 

implementations where performance is sacrificed in relation 
to cost. As the embodiment in FIG. 6b utilizes fewer 
components then that in FIG. 6a, its total cost would be 
lower. However, as the host processor is called on to do more 
work, rendering performance will be impacted. 

In whichever form, a graphics accelerator will typically be 
one or more printed circuit boards coupled to the computer 
systems. Coupling of the graphics accelerator was discussed 
above in reference to FIG. 5. In order to simplify the 
description of the the rendering pipelines of the preferred 
embodiment, the processor that provides the objects from 
the Active Object List to the rendering pipelines will be 
termed a control processor. In this context, the control 
processor would refer to the alternative configurations found 
in FIGS. 6a and 6b. 
As will be described below, the rendering pipelines in the 

preferred embodiment utilize a means for directly interpo 
lating pixel values and determining the X-coordinates of 
horizontal spans. As compared to prior art systems, the 
means of the preferred embodiment significantly reduces the 
amount of data storage for an Active Object List and 
significantly reduces the data bandwidth requirements. 

With regard to the Active Object List, when utilizing 
traditional forward differencing techniques the Active 
Object List will contain all the shading parameter data for 
each active object. It is estimated that the direct evaluation 
method of the preferred embodiment would provide a 50% 
storage savings. This is caused by the requirement that 2 n. 
bits of precision are required for a value, in order to retain 
in bits of precision after an arithmetic function is performed. 
For example, forward differencing an n bit parameter 
requires storing a 2 n current parameter value (pi) and a 2n 
parameter delta (pD), resulting in a parameter to be repre 
sented by 4 n bits. Direct interpolation only requires the 
end-points, i.e. 2 n bits of storage. As the number of 
parameters increases, the storage savings becomes more 
significant. In the preferred embodiment material properties 
parameters diffuse RGB, O (alpha or transparency), specular 
RGB, specular reflectivity (N), surface normal (N, N. N.) 
and Z are interpolated and propagated through the pipeline. 
As shading functionality increases, the number or param 
eters required to describe the object will increase. Note that 
other parameters such as specular ambient and diffuse light 
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12 
parameters remain constant and thus need not be interpo 
lated in the pipeline. 

Correspondingly, the data bandwidth (or aggregate data 
flow) required to move the objects is decreased. As data 
must be moved from the Active Object List to the rendering 
pipelines, a reduced quantity of data results in a reduced 
bandwidth. Further, forward differencing requires reading 
Pi-1 and Ap for 4N bits, then writing back Pi to the Active 
Object List (another 2N bits) for a total of 6N bits. As 
described above, in direct evaluation, only 2N bits will be 
transferred to/from the Active Object List. This results in a 
3x savings in the required Active Object List bandwidth of 
a system that directly interpolates the end-points. Moreover, 
the unidirectional data flow of direct evaluation also sim 
plifies system design. 

It should be noted that in the preferred embodiment the 
graphics acceleration may directly access the system frame 
buffer. Thus, inherent in the preferred embodiment is a 
Direct Memory Access (DMA) means which will allow the 
graphics accelerator to scanout rendered Scanlines directly to 
the system frame buffer. 

Using direct evaluation also reduces the computation 
necessary to set-up the active object list as slope divisions 
and parameter delta calculation (i.e. the AP) are not neces 
sary. These steps (performed by the front-end processors) 
are often expensive because of the care taken to avoid 
introducing error in the forward differencing calculation. 
A desirable effect provided by direct evaluation is that it 

facilitates the rendering of multiple scanlines in parallel. 
Because the primitives in the active list contain no infor 
mation dependent on vertical position, the same data can be 
fed into multiple pipelines, each configured to perform 
vertical interpolation for a different scanline. By contrast, 
the forward differencing algorithm changes the primitive 
description every scanline, so it is difficult to use the same 
data to drive the rendering of multiple scanlines. 

Description of the Rendering Pipeline 
The rendering pipeline of the preferred embodiment is 

designed to generate one shaded pixel per pipeline clock 
cycle. As described above, the rendering in the preferred 
embodiment utilizes the scanline approach. Using traditional 
forward differencing linear interpolation techniques, the 
rendering of multiple scanlines simultaneously is made 
difficult because of the inter-scanline dependencies. The 
rendering pipeline of the preferred embodiment avoids such 
difficulties through the use of multiple parallel pipelines and 
direct evaluation of coordinate and parameter values. 
As described above, forward differencing requires high 

data bandwidth. During the shading of pixels, i.e. horizontal 
interpolation, a given pixel typically will require over 200 
bits of data to be transferred for each shading function. A 
known technique for minimizing data bandwidth problems 
is to provide for fast interconnection between components. 
However, this may create other problems such as synchro 
nization and control. In connection with direct evaluation, 
the preferred embodiment further minimizes the required 
bandwidth through direct and distributed evaluation of a 
pixel interpolation token. This negates the need to send all 
the shading data required for a pixel down the pipeline. 
Endpoint values for all parameters are first sent whereupon 
an interpolation weight need only be provided for each pixel. 
Direct and distributed evaluation will be discussed in greater 
detail below with respect to horizontal interpolation. 
Operation of the Rendering Pipelines 
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Data and control information is transferred between vari 
ous stages in the rendering pipeline area as "tokens'. 
"Tokens' as utilized in the preferred embodiment, refer to a 
fixed structure for sending and receiving data and control 
information. In any event, prior to receiving objects, the 
rendering pipelines must be provided with setup informa 
tion, to define the rendering functions that will be per 
formed. In the preferred embodiment, this occurs by propa 
gation of a global mode setup token through the pipeline. 
The global mode setup token is described in greater detail in 
the section entitled Tokens. Briefly, the global mode setup 
token is generated by the control processor (i.e. FIG. 6a or 
the host processor per FIG. 6b) and is used to enable diffuse 
or specular shading, shadowing and a transparency mode. 
Once the pipeline has been set-up, the rendering pipelines 

may receive objects to be rendered. First, a Direct Input 
Stream Token is sent to the pipelines to designate which 
rendering pipelines will receive the forthcoming input 
stream. For objects, all the rendering pipelines may receive 
the input stream. However, if it is an instruction to cause a 
particular processing unit to perform a particular function, 
the rendering pipeline can be designated as appropriate by 
the Direct Input Stream Token. Next, the objects are sent 
down to the pipelines in corresponding DRAW instructions. 
A DRAW instruction merely indicates to the pipeline that an 
object or more precisely, a span, is to be rendered. The 
DRAW instruction is followed by data describing 2, 3, or 4 
vertices. Loading 4 vertices causes an independent quadri 
lateral to be drawn. For a quadrilateral to be drawn; the 
vertices are loaded in the order V0. . . V3. A quadrilateral 
is drawn as two triangles. A triangulation field in the DRAW 
command indicates along which axis to split the quadrilat 
eral. Loading 3 vertices causes the triangulation field to be 
ignored. 

Loading 2 vertices indicates that a strip of connected 
quadrilaterals is being drawn. A quadrilateral strip is always 
begun with a detached quadrilateral loading all 4 vertices. 
The immediately following DRAW command reloads 
V0/V1, and causes 2 more triangles to be drawn, triangu 
lated as indicated by the triangulation field, and sharing 
previously loaded V2/V3. The subsequent DRAW reloads 
V2/V3, sharing the previous V0/V1, and so on, always 
swapping which 2 vertices are loaded. The triangulation 
field allows the triangulation axis of each quadrilateral to be 
specified independently; because the vertex order is 
swapped for every quadrilateral, leaving the triangulation bit 
constant will result in the cross-hatch triangulation pattern. 

FIGS. 7 and 8a–8c describe operation of the rendering 
pipelines as an object is being rendered. Referring to FIG.7, 
in the preferred embodiment the rendering pipeline, such as 
pipeline 607, is comprised of at least 3 stages. Stage one 
derives interpolation values, spans and pixels for the objects. 
Stage two performs hidden surface removal, shadow func 
tions and performs ambient color calculations. In Stage 
three, a compositing function is performed as well as 
scanout of a rendered scanline. As each stage provides for 
standard passing of information and synchronization of 
operation within the pipeline, additional shading functions, 
such as texturing, may be added between stages two and 
three. In the preferred embodiment, Gouraud shading is 
preformed. If alternative shading methods are desired, such 
as Phong shading, additional stages between state two and 
three, may be included. Each of the stages is discussed in 
greater detail below. 
Stage One 

In Stage 1, object descriptions (hereinafter objects) 701 
from an active object list and control tokens 702 are input 
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14 
into a stage 1 processing means. The stage 1 processing 
means acts as a pre-processor, for receiving and pre-pro 
cessing the objects for rendering. A first function performed 
in stage one is vertical interpolation (via vertical interpola 
tion module 703). A primary purpose of vertical interpola 
tion is to identify the X-coordinates for horizontal spans 
corresponding to the active objects in the scanline being 
processed. The vertical interpolation module also generates 
set-up tokens describing the span and it’s shading param 
eters. The set-up tokens are forwarded to succeeding stages 
in the pipeline. A second function performed is setup for 
horizontal interpolation (via horizontal interpolation module 
704). Horizontal interpolation is the process by which pixels 
in a span are shaded. The horizontal interpolation process is 
distributed in that separate stages perform separate shading 
functions. The horizontal interpolation module 704 gener 
ates Pixel interpolation tokens for each pixel in the span. 

FIG. 8a describes stage 1 processing in more detail. First, 
the objects from the active object list, corresponding to the 
identified scanline, are sent to the stage one input, step 801. 
It should be recalled that the data representing the objects 
include the coordinates of the vertices and shading param 
eters at the vertices. As the objects are sent down in a "burst' 
mode, a First In First Out (FIFO) queue is provided which 
stores the objects prior to their being processed. The stage 
one processing unit may suspend transfer of objects via 
provided control signals. Once the objects are input into the 
pipeline, they are serially processed within Stage One (but 
the processing of an individual object may occur in parallel). 
The first step for pre-processing an object for the pipeline, 
is vertical interpolation to identify a horizontal span of the 
object, step 802. A horizontal span is identified by the end 
coordinates representing the portion of the object that is 
displayable on the scanline being processed. As the scanline 
being processed represents a Y-coordinate, the X-coordinate 
is identified by determining the intersection point of a 
scanline and a corresponding active edge. Following the 
calculation of the span coordinates, corresponding param 
eter values are then generated for the span end-points, step 
803. This is accomplished by linearly interpolating the 
endpoints of the active edges with respect to the scanline 
being processed. The details of vertical interpolation are 
described in more detail below. 

Next, span parameter set-up tokens are generated and sent 
down the pipeline, step 804. Such span parameter set-up 
tokens contain the RGB values or Z-values for the end 
points of the span that were generated in step 803. It should 
be noted that certain tokens will only be used by certain 
successive stages. For example, stage 3 does not use Z-value 
set-up tokens. If a particular stage does not require the 
information contained in a particular token, that token will 
be ignored. 

Next, setup for horizontal interpolation of the span is 
performed. Horizontal interpolation refers to the interpola 
tion of the parameter values of the end-points of a span, 
across the pixels in the span. The set-up for horizontal 
interpolation requires transfer of the coordinate points of the 
span, step 805, and the generation of a pixel interpolation 
token, step 806. A pixel interpolation token consists of the 
pixel coordinates and a pixel interpolation weight value. The 
pixel coordinates are determined by simply counting across 
the span starting at the left most endpoint on the span. 
Generation of the pixel interpolation token is described in 
greater detail below with respect to horizontal interpolation. 
Next, the corresponding Pixel Interpolation token is 
assembled and sent down the pipeline, step 807. A check will 
be made to determine whether it is the last pixel in the span, 
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step 808. If it is not the last pixel in the span, the next pixel 
coordinates are generated (typically by counting to the next 
horizontal pixel value), step 809, and the process repeats 
starting at step 806. 
The steps 802-809 will be repeated for all the objects 

received in the FIFO. As there may be some overlap in 
processing, i.e. more than one object may be processed 
through the pipeline at one time, there is typically no check 
after the generation of a pixel interpolation token to see if 
there are any more objects in the object FIFO. Moreover, 
some of the steps may overlap. For example, the generation 
of span parameter values may occur during the horizontal 
interpolation set-up processing. 
Stage Two 

Referring back briefly to FIG. 7, a first function of Stage 
Two is hidden surface removal (via hidden surface removal 
module 705). The hidden surface removal module 705 
utilizes a Z-Buffer algorithm to eliminate pixels that will not 
be shaded, because they are "behind other objects (i.e. not 
front most). Shadow analysis, to further eliminate pixels that 
will not be shaded, may also be performed in conjunction 
with Z-analysis. The shadow analysis is also performed by 
the hidden surface removal module 705. Stage 2 also per 
forms an ambient color calculation on the visible pixels (via 
RGBA module 706), and places these values into the Pixel 
Interpolation Token. The output of stage two are the front 
most, non-shadowed spans, as well as tokens that are 
flowing unprocessed through the pipeline, e.g. null tokens. 

FIG. 8b illustrates the steps performed in Stage Two. 
First, prior to receiving any object data, the stage two 
processing unit receives the Global Mode set-up token, step 
820. The Global mode set-up token is used to set appropriate 
processing criteria for the desired rendering functionality. 
Next, the span parameter set-up tokens generated in stage 
one are received, step 821, and the relevant data (i.e. Z and 
RGBo values) is loaded into registers embodied within the 
processing unit, step 822. 

Stage 2 processing begins when a Pixel Interpolation 
token is received, step 823. First a corresponding Z-value for 
the pixel is calculated, step 824. The Z value for the pixel is 
calculated by directly evaluating a linear interpolation 
(LIRP) function, using an interpolation weight value con 
tained within the pixel interpolation token. When comparing 
Z-values, a lower Z-value means that the object is closer to 
the viewer. In this context, this means that a first object with 
a higher Z-value than a second object, will be behind and 
thus hidden by the second object. It should be noted that the 
Z-buffer will always be initialized to a maximum Z-value so 
that it will have a valid value to compare incoming Z-values 
with. This horizontal interpolation of the Z-values of the 
various pixels in the span is described in more detail below. 
Once the Z-value of the pixel has been determined, a 
comparison is then made of the Z value for the pixel with a 
Z value at the corresponding pixel location in the Z buffer, 
step 825. If the Z value of the pixel is greater than the value 
in the corresponding location in the Z buffer, processing of 
the pixel is terminated, step 826. Termination of processing 
of the pixel involves converting the corresponding token 
into a null token, whereupon it will flow through the pipeline 
unprocessed. If the value is less than or equal to the value in 
the Z buffer, then the new lower Z-value is returned to the 
Z-buffer, step 827 and a check for the last object is made, 
step 828. If it is not the last object, the next pixel interpo 
lation token is received, step 823. If it is the last object then 
it must be determined if pixel elimination because of shad 
owing will be performed. A first check to see if Second pass 
analysis will be performed, step 829. This second pass is 
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performed if the shadow count flag in the global mode setup 
token is set. If yes, second pass analysis is performed, step 
830, otherwise it is determined if third pass shadow testing 
is to be performed, step 831. If yes, third pass analysis is 
performed, step 832. The aforementioned shadow analysis is 
described in greater detail below. In any event, the next step 
will be to determine the RGB ambient color contributions 
for the pixel, step 833. This simply involves linear interpo 
lation of the pixel based on the endpoint parameter values of 
the corresponding span. Once this is performed, the RGB 
values are placed back into the pixel interpolation token and 
the token is propagated to the next stage. 
Stage Three 

In Stage Three, a compositing function is performed (via 
RGB composition module 707). Compositing involves the 
generation of pixel values due to transparency of objects. 
This will typically occur when multiple objects have iden 
tical Z-values. A transparency value that is associated with 
an object is termed O. The O. value represents the percentage 
of the final color value that the corresponding object con 
tributes. For example, an object with an O. of 50, will 
contribute 50% of the final color pixel value. In the preferred 
embodiment two types of transparency calculations are 
performed, additive transparency and filtered transparency. 
In additive transparency, the existing values are simply 
added to the incoming color value after being scaled by O. 

In filtered transparency the new color value is linearly 
interpolated with the old color value to generate the filtered 
color value. In filtered transparency, the Relative Weight 
used for the interpolation function is the value provided with 
the incoming color data, i.e. o. 

Finally, in the stage 3 a scanline buffer in scanout module 
708 is used to collect the final values of the pixels for the 
scanline being processed. Once all the objects in the scanline 
have been processed, the contents of the scanline buffer is 
transferred to the system frame buffer 709. 

FIG. 8c further illustrates Stage Three processing in the 
rendering pipeline. As in Stage Two, the global mode setup 
token received, step 840, and the appropriate processing 
parameters are set. In this case the processing parameters 
will dictate which of additive or filtered transparency mode 
will be used. Next, Pixel Interpolation tokens are received, 
step 841. The first step is to determined if transparency 
processing will not be performed by checking if O-1, step 
842. If O-1, then the pixel color values will be loaded into 
the scanline buffer, step 846 (since the incoming pixel 
shading values provide 100% of the blended color value). If 
transparency processing has been specified, additive trans 
parency is performed, step 843. Next, it will be determined 
if filtered transparency will be performed, step 844. If yes, 
filtered transparency blending is performed, step 845. Once 
the blending has occurred and a new color value has been 
generated or if now filtered transparency blending is per 
formed, the new pixel color values is loaded into the 
corresponding location in the scanline buffer, step 846. 

It is then determined if the final pixel has been processed, 
step 847. If the last pixel has not been processed, the next 
pixel interpolation token is received, step 841. If the last 
pixel in the last span has been processed, the contents of the 
scanline buffer is transferred to the system frame buffer via 
a scanout, step 848. As described above, it is the system 
frame buffer that is used to drive the display means. It should 
be noted that in the preferred embodiment, the scanline 
buffer is double buffered. This will allow the contents of the 
Scanline buffer to be transferred to the frame buffer while a 
new scanline is being processed. 
Vertical Interpolation 
As defined above, vertical interpolation is the process by 

which the X-coordinates of the end-points on a span are 
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determined. A span is the portion of an object that is visible 
on the scanline being rendered. The vertical interpolation of 
the preferred embodiment is achieved by a direct solution 
method that uses object description information and the 
identify of the scanline. Vertical interpolation for an object 
on a scanline being rendered is illustrated with respect to 
FIG. 9. Referring to FIG. 9, the coordinate points for the 
vertices of the object are A(Xa,Ya)901, B(Xb, Yb) 902 and 
C(Xc,Yc) 903. The scanline being processed is Ycs 904. 

In this example, the coordinate points for the object being 
processed are: Xa=60, Ya=20, Xb=40, Yb=150, and Xc=80, 
Yc=180. The current scanline Ycs=100. By the process of 
Vertex Sort (which is described in greater detail below), the 
active edges of the object for Ycs are determined to be AB 
910 and AC911. An active edge is merely one that intersects 
the current scanline. An edge is considered active if it 
satisfies the equation: 

Y-top<Y current scanline<=Y-bottom, 

where the Y coordinate increases from top to bottom. For the 
edge AB 910 Y-top=Ya=20, and Y-bottom=Yb=150; so that 
20<100<=150 and the equation is satisfied. For the edge AC 
911 Y-top=Ya=20, and Y-bottom=Yc=180; so that 
20<100<=180 and the equation is satisfied. With respect to 
edge BC912Y-top=Yb=150, and Y-bottom=Yc=180; so that 
the equation 150<100<=180 is not satisfied and edge BC912 
is not an active edge. 
The X-coordinate for the points where each scanline 

intersects an active edge is calculated by first determining a 
relative weight w for the edge on scanline Yes using the 
formula: 

where Y is the current scanline, Yo is the highest scanline 
ordinate value (lowest in numerical value) of the active edge 
and Y is the lowest scanline ordinate value (highest in 
numerical value) of the active edge. 
The X-coordinate is then determined by directly evaluat 

ing the linear interpolation equation: 

where X is the leftmost horizontal coordinate of the active 
edge and X is the rightmost coordinate of the active edge. 

With respect to FIG. 9, the active edge AB 910 intersects 
the current scanline 904 at point D (X,Y) 905. The active 
edge AC intersects the current scanline 904 at point E (X, 
Y) 906. For the point D905, the relative weight is 

W = (Ycs - Ya)/(Yb - Ya) 
= (100-20)/(150-20) 
= 80/130 
= 8/13. 

Inserting this into the linear interpolation equation, the 
X-coordinate is determined as 

Xo = Xbc1 - W) + Xa(W) 
= 40(5/13) + 60(8/13) 
= 200113 - 480/13 

s: 680/13 

= 524/13 

which is rounded to 53. Thus, the coordinates for point D 
905 are (53, 100). 

10 

5 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
For the point E906, the relative weight is 

W = (Yes - Ya)/(Yc-Ya) 
(100-20)/(180-20) 
80/160 

112. 

Inserting this into the linear interpolation equation, the 
X-coordinate is determined as 

X Xa(1 - W) + Xc(W) 

= 60(1/2) +80(1/2) 
= 30 + 40 

70 

Thus, the coordinates for point E906 are (70, 100). 
When using such interpolation techniques, fractional 

components may arise due to the divisions required in 
achieving the W value. This may result in the rendering of 
pixels on the boundaries between two triangles twice, or 
missing pixels to be rendered. To account for such fractional 
components, a rule is adopted that pixel centers in both the 
X and Y directions are at X.50 and Y.50, respectively. With 
respect to FIG. 9, the pixel center for the point A901 (60, 
20) would be (60.50, 20.50). Further, a pixel is covered if the 
equation 

minkpixel co-ordinate-max 

is satisfied. In order for a point to be included in a horizontal 
span, the point coordinates are compared to the X-coordi 
nate characteristics of the endpoints of the span and the 
Y-coordinate characteristics endpoints of the active edges 
for the object the span is associated with. Referring again to 
FIG.9 for a point to be within the horizontal span defined 
by the points D905 and E906, the following criteria must 
be met: 

For the X-Coordinate: 

and 
for the Y-Coordinate: 

100.50&Y&s100.50. 

By using<(less than) for comparison on one side and 
>=(greater than or equal to), the rendering of pixels on the 
boundaries between two triangles twice, or missing pixels, is 
avoided. Here the Y coordinate value will typically be 
satisfied because it refers to the scanline being rendered. 
Generation of Shading Parameters for Span Set-up Tokens 
The shading parameter values, i.e. the RGB, Z and o. 

values, at each of the span endpoints are calculated in the 
same manner as the X-coordinate. Since W has been previ 
ously calculated, it is simply a matter of inserting the 
provided shading parameter values at the endpoints of the 
active edges into the linear interpolation function. Referring 
back to FIG.9, the endpoints D905 and E906, the provided 
parameter values at each of the endpoints of the active 
edges, i.e. points A901, B902 and C903, are provided as 
input to the linear interpolation function. For example, the 
shading parameters at endpoint D905 may be calculated 
using the linear interpolation equation as P=P(1-W)= 
P(5/13)+(PA(8/13); where P is the provided parameter 
value at point A901, P is the provided parameter value at 
point B 902 and PD is the interpolated parameter value at 
point D 905. Similarly, the shading parameters for the 
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endpoint E906 may be calculated using the linear interpo 
lation equation as P=PA(1-W)+P(W)=(PA+P)/ 2; 
where P is the provided parameter value at point A901, PC 
is the provided parameter value at point C903 and P is the 
interpolated parameter value at point E906. These shading 
parameter values at the endpoints of the span are calculated 
and propagated through the rendering pipeline through cor 
responding span set-up tokens. 
Generation of a Pixel Interpolation Token 
As described above with respect to Stage 1, pixel inter 

polation tokens are generated after span coordinates have 
been defined. These end-points, say Xa and Xb, are received 
by the Horizontal interpolation module, which immediately 
compares them to determine which is leftmost. It is assumed 
that Xa is leftmost. If Xb is leftmost, Xa and Xb are 
swapped. In this scheme, an interpolation weight value W=0 
reference refers to the left end of the span (i.e. Xa). A W=1 
reference refers to the right end of the span (i.e. Xb). As 
described above, the interpolation weight value W refers to 
the relative weight for a direct interpolation function which 
is used to determine the value of a pixel. 

Creating a Pixel Interpolation token requires the genera 
tion of two numbers: the target pixel address X and the 
interpolation weight W. The target pixel address X genera 
tion is accomplished by counting from the leftmost X value 
generated from the vertical interpolation step. For generat 
ing W, the method of interpolation must first be determined. 
In the preferred embodiment, a linear interpolation method 
is used. It would be apparent to one skilled in the art to use 
other interpolation methods, e.g. perspective corrected inter 
polation. It should be noted that use of alternative interpo 
lation methods would have an effect on W as well as an 
effect on the direct solution method of linear interpolation 
utilized in each of the succeeding processing units. It is 
anticipated that a perspective corrected implementation may 
be used to calculate W, while the linear interpolation meth 
ods retained within each of the processing units, thus 
enabling a perspective corrected implementation without 
requiring the replacement of all the processing units of a 
rendering pipeline. 

In the preferred embodiment a function WCX) is calcu 
lated for each span. The function W(X) is defined as: 

Since a linear interpolation of the pixels across the span is 
being performed, the slope m of the WCX) function is 
constant and can be computed once for the span via the 
equation: 

m=1(Xright-Xleft). 

Thus, by substitution the WCX) function can be reduced to 
the equation: 

This function is desirable since it minimizes the division 
operations that would need to be performed for the span. So 
for each pixel in the span, the x-coordinates of the pixel 
being rendered and the left most endpoint of the span are 
inserted into the WCX) function in order to derive the 
interpolation weight W for that pixel. 

FIG. 10 illustrates several pixel locations in a span 1001. 
The span 1001 was derived using the vertical interpolation 
of the preferred embodiment with respect to FIG. 9. In any 
event, counting sequentially as described above, a pixel F 
1002 has coordinates (56, 100). The corresponding pixel 
interpolation weight is calculated as W56-53/70-53=3/17. 
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A pixel G 1003 has coordinates (61, 100) and a correspond 
ing pixel interpolation weight that is calculated as Wi-61 
53/70-53=8/17. Finally, A pixel H 1004 has coordinates (67, 
100) and a corresponding pixel interpolation weight that is 
calculated as W=67-53/70-53=14/17. 
Horizontal Interpolation 

Horizontal interpolation generally refers to the shading of 
the consecutive pixels within a span. As described above, the 
first stage of the pipeline performs set-up for the horizontal 
interpolation process by calculating pixel weighting values, 
assembling pixel interpolation tokens and generating span 
set-up tokens. In the preferred embodiment the shading 
functions are distributed. Each stage or processing unit 
performs a separate and distinct function in the rendering of 
a pixel. In the rendering process, horizontal interpolation 
requires the greatest amount of processing resource. 
Advanced shading models require a great deal of data to 

render a pixel. For example, a Z buffered Phong shading 
calculation requires Z, diffuse color (RGBod), specular 
color (RGBs), specular power (Ns), and surface normal 
vector (NXNyNZ) as inputs. Depending on accuracy, this 
represents about 150 bits of data which must be generated 
per pixel. To perform the shading of the preferred embodi 
ment, approximately 224 bits would be required. The width 
of this data contributes to the high cost of known high 
quality rendering hardware. 
To reduce the width of the data path, while still main 

taining 1 pixel per clock rendering speeds, the rendering 
pipeline of the preferred embodiment utilizes distributed 
parameter interpolation for determining the value of pixels 
in a span. As described above, each processing unit in the 
pipeline performs a certain part of the rendering function 
ality. Each processing unit requires specific parameter data 
(e.g. the Z buffer processing unit requires the interpolated Z 
value for each pixel) in order to calculate it's predetermined 
function. So, set-up tokens generated in stage 1 with the 
parameter information are first sent down the pipeline. 
Storage mediums, e.g. registers are embodied within each 
processing unit for storing the left and right parameter 
values of the current span (e.g. the Z buffer processing unit 
has Zo and Z registers). Rather than passing actual inter 
polated parameter values down the pipe, the pixel rendering 
process is driven by the Pixel Interpolation token. As 
described above, this token includes W, representing an 
interpolation weight between 0 and 1. As each processing 
unit receives the Pixel Interpolation token, it performs a 
linear interpolation of the left and right span values to 
calculate the interpolated parameter value for the pixel. So 
at a pixel location N, in a span with left endpoint A and right 
endpoint B, a shading parameter value P may be calculated 
by using the linear interpolation function 

Because a typical span is several pixels wide, distributed 
parameter interpolation reduces the amount of data that must 
flow down through the pipeline. For, example, to do the Z 
buffer calculation for a 7 pixel wide span, first a Span Setup 
token is sent, initializing the Zo and Z registers (32 bits 
each). This requires the same bandwidth as sending two 
actual interpolated Z values down the pipeline. However, 
after this stage, each pixel in the span only requires a W 
value to drive direct interpolation means embodied in each 
of the processing units. In a comparison of a relative 
bandwidth, sending 7 interpolated Z-Values down the pipe 
line requires 224 bits, while rendering 7 pixels by sending 
interpolated values requires 7*32+7*10=134 bits. This 
results in a 50% reduction in data bandwidth requirements. 
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In fact, because many parameters are distributed, and all are 
interpolated by the same 10 bit W value, the overall saving 
may be much higher. 

Effectively this technique increases silicon complexity to 
reduce dependence on fast interconnections between pro 
cessing units. Each processing unit requires multipliers for 
the interpolation function, whereas typical rendering hard 
ware only needs an accumulator to implement a forward 
differencing algorithm. Although similar techniques could 
be used to distribute the forward differencing algorithm 
(although savings are lower, because more setup accuracy is 
required), there are other factors which favor distributing the 
parameter interpolation function. Distributed Parameter 
Interpolation allows the use of perspective corrected inter 
polation-forward differencing is limited to linear interpo 
lation. Perspective corrected interpolation provides superior 
texture mapping quality by avoiding the distortions inherent 
in linear interpolation. 

Referring back to FIG. 10 an example of horizontal 
interpolation based on the vertically interpolated span from 
FIG.9, is provided. As above, the span endpoint coordinates 
are D (53,100) 905 and E (70,100) 906. Span set-up param 
eter values have been propagated down the pipeline token 
corresponding to the shading parameter values for the end 
points of the span. A pixel interpolation token provides the 
pixel coordinates and weight value. What is left is to 
calculate the shadings values for pixels across the span. 
Using the W values calculated above in the description of 
generating a pixel interpolation token, at point F (56, 100) 
1002 the shading parameter values may be calculated as 
P=P(1-W)+P(W)=P(14/17)+P(3/17). At point G 
(61, 100) 1003 the shading parameter values may be calcu 
lated as P=PA(1-W)+P(W)=P(9/17)+P(8/17). At 
point H (67, 100) 1004 the shading parameter values may be 
calculated as P=P(1-W)+P(W)=P(3/17)+P(14/17). 
Shadowing 
As described above, the preferred embodiment may per 

form shadow analysis to further eliminate pixels from pro 
cessing. The shadowing algorithm utilized in the preferred 
embodiment provides for the determination of object 
shadow volumes (with respect to a particular light source). 
All objects inside of the volume would thus be in shadow. 
Sets of dummy polygons, bounding the shadow volume, are 
calculated by the host processor (or alternatively by control 
processors as illustrated in FIG. 6a). The face normals of the 
polygons are oriented so that they face outward from the 
volume. Using these dummy polygons, the processing unit 
then determines whether each pixel on a visible object is 
inside one of the shadow volumes. 
The determination of whether an object is in shadow 

occurs in three passes of the objects. In a first pass, a Z-buffer 
calculation is performed to identify the front most object at 
every pixel. The first pass is the default operation of the 
Z-buffer and occurs with or without shadow processing. In 
a second optional pass, the determination of which of the 
identified visible pixels are inside a shadow volume is done 
by examining the shadow volumes in front of each pixel. 
This is specified when the shadow count flag in the global 
mode setup token is set. During this second pass the closest 
Z-values are read from the buffer and compared with incom 
ing shadow polygons for each light source. The shadow 
polygons can be either front or back facing. Their orientation 
is specified by a flag, "front", specified in the Z setup token 
(described in more detail below). A shadow count is then 
determined in the following manner: If a shadow polygon in 
front of the pixel faces the front of the scene the shadow 
count is decremented by one. If a shadow polygon in front 
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of the pixel faces the rear of the scene, the shadow count is 
incremented. A volume entirely in front of the pixel will 
generate one increment and one decrement at that pixel, 
leaving the shadow count unchanged. If, the shadow count 
is lower than it began after all the shadow polygons have 
been processed; the pixel is in shadow with respect to that 
polygon. In any event, the original "closest' Z value is 
written backinto the buffer unchanged during this operation. 
A third optional pass is implemented when the shadow 

test flag in the global mode token is set. In the third pass, the 
"closest' Z-values are read from the buffer and compared 
with the incoming Z-values. If they are equal then the 
shadow count is examined. If the shadow count is equal to 
zero then the object is not in shadow and it is output. If the 
shadow count is not equal to zero then the pixel interpolation 
token is modified to become a null token. 

Tokens in the Preferred Embodiment 

As described above, informational and control units that 
are transferred between the different stages are called tokens. 
Token is a term of art that refers to a data structure with 
accompanying information, that is passed between the 
stages in the pipeline. Upon receiving a token, each of the 
processing units may then 1) process and interpret the token, 
2) pass the token to a next processing unit without process 
ing or 3) terminate the processing of the token. All process 
ing units only process tokens that contain information 
needed by the particular processing unit. Otherwise, the 
token flows through the processing unit unused. 

Tokens in the preferred embodiment can be categorized 
into three different types; General Tokens, Setup Tokens and 
Control Tokens. Three attributes are common to all tokens. 
First, each of the tokens has a width of 77 bits. 77 bits was 
chosen as a number that would accommodate all information 
needed as well as providing for the inclusion of new 
functionality. As some tokens will not require all 77 bits, 
some of the bits are unused within the pipeline. Although 77 
bits are utilized in the preferred embodiment, it would be 
apparent to one skilled in the art to utilize a different number 
as the token width. 
A second common attribute of all the tokens is the use of 

the first bit in the token. The first bit of each token identifies 
the token as being a set-up token or a non-setup token (i.e. 
a general or control token), and is called the PSetup bit. This 
is done to facilitate and simplify the design of the individual 
processing units that comprise the pipeline. - 
The third common attribute is the use of the succeeding 4 

bits after the first bit as a TokenD field. The TokenD field 
identifies the token and provides further information for the 
processing of the token. 
The bit positions of data on the token is important because 

the underlying circuitry which interprets the tokens has 
hard-wired logic to specific bit positions on them. For 
example, as a token enters a processing unit, it initially is 
saved in a latching means. Hard wired logic, e.g. an OR gate, 
inspects a predetermined bit to determine a logic path that 
the token will follow. Such circuit design techniques are 
known in the art. However, it would be apparent to one 
skilled in the art to modify the position of the information 
and to modify the underlying hardware to reflect the new 
positions. Alternatively, a means for interpreting tokens 
without hardwiring to specific bit positions may be 
employed, e.g. through a token parsing means. Such modi 
fications would not depart from the spirit and scope of the 
present invention. 
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General Tokens General tokens are recognized by all chips 
in the pipeline. There are three general tokens; the null 
token, the pixel interpolation token and the pixel overlay 
token. The null token is a pixel interpolation token whose 
processing has been terminated. Processing may typically be 
terminated because Stage 2 processing has determined that 
the corresponding object is behind or in the shadow of 
another object. A null token has a false value in it's PSetup 
bit and a Zero (0) value in the TokenID field. 

Pixel interpolation tokens are used to drive the horizontal 
interpolation process and contain information about a pixel 
to be rendered. Generation of the values in the pixel inter 
polation token is described in detail below with respect to 
horizontal interpolation. The pixel interpolation token is 
illustrated in Chart A. 

CHARTA 
Pixel Interpolation Token 

Field Width Walue Use 

1 PSetup False 
2 Token) 4. 1 
3 X 11 Pixel in current scanline segment 
4. W 12 Interpolation constant 
5. A 10 DiffusefShaded color 
6 R 10 Diffuse/Shaded color 
7 G 10 Diffusel Shaded color 
8 B 10 Diffuse/Shaded color 
9 ForceAdditive 1. 1 = Force this interpolation 

to act in additive mode 
10, Unused 8 Reserved; must be zero 

Line 1 indicates that bit 1 will have a false value (typically 
0) to indicate that it is not a set-up token. Line 2 identifies 
the pixel interpolation token as having a Token ID of 1. From 
Line 3, it is shown that the next 11 bits will contain the X 
coordinate for the pixel. This may have come from either the 
vertical interpolation processing, which would indicate that 
the pixel is on one of the active edges, or from a counting 
means that is used to identify the X coordinates across the 
span. 
From line 4, the next 12 bits will contain the interpolation 

weight. This interpolation weight will have been generated 
in stage 1 during the horizontal interpolation process. Lines 
5-8, i.e. the next 40 bits contain the RGBco information 
describing the diffuse/shaded color for the pixel. Next, a 
force additive field is used to indicate that additive trans 
parency blending will be performed in the compositing 
stage. Finally, the remaining 8 bits of the pixel interpolation 
token are unused. 
W is used to interpolate between the boundary values, 

generating Z, R, G, B, and O. For R, G, and B the 
interpolation operation results in Gouraud shading. X is used 
as an address by the Z buffer to access a Z value. The Z 
values in the buffer are the "closest' current Zs to be 
processed. In operation, the "closest' Z is read from the 
buffer and compared with the interpolated Z. If the interpo 
lated Z is closer (less that or equal to it), it is stored in the 
buffer, the token not modified, and R, G, B and O. are output. 
If the interpolated Z is not closer (greater than it), then it is 
not written into the buffer, the token is modified to be a null 
token and R, G, B and o, are not output. 
The pixel overlay token is generated by the control 

processor and provides a means by which pixels can be 
directly assigned. This may occur for, for example, when 
titling is desired on a particular image. The format of the 
pixel overlay token is illustrated in Chart B. 
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CHARTB 
Pixel Overlay Token 

Field Width Value Use 

1 PSetup False 
2 TokenD 4 2 
3 X 11 Pixel in current scanline segment 
4. W 2 Interpolation constant 
5 R O Diffusei Shaded color 
6 G 10 Diffuse/Shaded color 
7 B 10 Diffuse/Shaded color 
8 A 10 DiffusefShaded color 
9 ForceAdditive 1 = Force this overlay to 

act in additive mode 
0. Unused 7 Reserved; must be zero 

Set-Up Tokens 
As noted above, set-up tokens are generated during stage 

1 pre-processing. Generation of set-up tokens is described in 
more detail in the description of vertical interpolation. The 
set-up tokens contain span parameter information for cor 
responding pixel rendering functions. 

Set-up tokens provide the span endpoint parameter values 
that are utilized during the horizontal interpolation process. 
The different types of set-up tokens include Z set-up, Diffuse 
RGB set-up, Specular RGB set-up, Map set-up and Normal 
Set-up. 
CHARTC illustrates a Z setup token. Like all tokens, the 

first 5 bits are comprised of a PSetup bit and a TokenID. In 
this instance, since it is a setup token, the value of this 
PSetup bit is a true value (e.g. a binary 1 value). The Z setup 
token contains two horizontal Zboundary values, Z0 and Z1 
(on lines 3 and 7 respectively), which are used for interpo 
lating between to generate a Z value for each pixel of a span. 
The Z Setup token also contains a bit called front (on line 5). 
This bit is used during the shadow calculation to determine 
whether or not the pixel is obscured due to a shadow. Finally, 
abit called diffuse is provided (line 4). The diffuse bit is used 
to enable lighting calculations that would be performed 
when determining if the pixel is in shadow. 
The Z set-up token is utilized in stage 2 of the pipeline for 

performing hidden surface removal and shadow calcula 
tions. 

CHARTC 
Z Set-up Token 

Field Width Value/Use 

1. PSetup 1 True 
2. TokenD 4. 
3. Zo 32 Zo 
4. Diffuse Lighting calculations enabled 
5. Front Front facing shadow plane 
6. Unused 2 Reserved; must be zero 
7. Z 32 Z 
8. Unused 4 Reserved, must be zero 

The Diffuse RGB set-up token is used to provide RGB 
values based on a diffuse reflection model. The Diffuse RGB 
set-up token is illustrated in Chart D. The Lines 3-6 provides 
the diffuse color components for the left most pixel in the 
span. The lines 7-11 provide the diffuse color components 
for the right most pixel in the span. 
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CHART D 
Diffuse RGB Set-up Token 

Field Width Walue/Use 5 

1. PSetup True 
2. Token) 4 OXo, 
3. Ado 9 Diffuse colouro 
4. Rdo 9 Diffuse colouroKdo 
5. Gdo 9 Diffuse colour Kdo O 
6. Bdo 9 Diffuse colouro Kdo 
7. Ad 9 Diffuse colour*Kd 
8. Rd 9 Diffuse colour Kd 
9. Gd 9 Diffuse colour*Kd 

10. Bd 9 Diffuse colour 

15 
The Specular RGB set-up token is used to provide RGB 

values based on a specular reflection model. The Diffuse 
RGB set-up token is illustrated in Chart E. The Lines 3-5 
provides the specular color components for the left most 
coordinate in the span. Line 6 provides the specular power 
component for the left most coordinate in the span. The lines 
7-10 provide the specular color components for the right 
most coordinates in the span. Line 11 provides the specular 
power component for the right most coordinate in the span. 

25 
CHARTE 

Specular RGB Set-up Token 

Field Width Walue/Use 

1. PSetup 1 True 30 
2. TokenD 4. 3 
3. Nso 9 Specular powero 
4. RSo 9 Specular colour Kso 
5. Gso 9 Specular colouro. Kso 
6. Bso 9 Specular colouro. Kso 
7. Ns 9 Specular power 35 
8. Rs 9 Specular colour Ks 
9. Gs 9 Specular colour*Ks 

10. Bs 9 Specular colour Ks 

The Normal set-up token is used to define normal values 
for each of the the coordinate endpoints. The Normal set-up 0 
token is illustrated in Chart F. The lines 3-5 define the 
normal for the left most pixel in the span and the lines 6-8 
define the normal for the right most pixel in the span. 

45 
CHART F 

Normal Set-up Token 

Field Width Valuefse 

1. PSetup True 50 
2. TokenD 4. 4 
3. Nx 12 Normal 
4. Nyo 2 Normal 
5. Nzo 2 Normal 
6. Nx 12 Normal 
7. Ny. 12 Normal 
8. Nz 12 Normal 55 

Control Tokens 
Unlike general tokens and set-up tokens, control tokens 

are generated by the control processor (with one exception 
being a Scanout Data token, which is also generated by the 60 
Z chip 705 when scanning out its buffer). Control tokens are 
commands to target chips in the pipeline to perform a 
particular function, e.g. swap buffers, output scanline, etc. It 
is through the use of control tokens that operation and 
resources of the pipeline are managed. 
The Load Scanline DMA Write Register Control Token, 

illustrated in Chart G, is used to control the writing of a clear 
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register in the Stage 2 and 3 processing units. 

CHART G 
Load Scanline DMA Write Register Control Token 

Field Width Walue/Use 

1. PSetup 1. False 
2. TokenD 4. 0xF 
3. OpCode 8 
4. RGB 1 Target RGB chip 
5. Z. 1 Target Z chip 
6. Unused 22 Reserved, must be zero 
7. Write Value 40 Value written by 

scanline DMA 

The Scanline DMA setup/start Control Token provides the 
start address, length, delay, write, scanout enable, and 
scanout mode data, and is illustrated in Chart H. The DMA 
reference is to a Direct Memory Access component in the 
computer system. In order to avoid going through the host 
processor to send data to the system display buffer, a DMA 
a component is typically utilized. The RGB/Z flag at lines 
4-5 is used to indicate which of the stage 1 or stage 2 
processing units the the token is targeted for. The delay field 
on line 8 specifies how may pixels to let flow through before 
beginning to read from the scanout buffer. The flag is 
necessary since the buffer may be cleared without outputting 
its contents. The scanout mode field on line 11 specifies 
which 32 of the 40 bits in each pixel location should be read 
out. The different modes are: read 40 bits and round to 32 
bits. The round to 32 bit mode is not used in the stage 2 
processing unit. The scanout enable is used to permit 
scanout of the contents of the buffer. Finally, the token is 
used to initiate the writing of the buffer. 

CHARTH 
Scanline DMA setuplstart Control Token 

Field Width Walue.Use 

1. PSetup 1 False 
2. Token) 4. 0xF 
3. OpCode 8 2 
4. RGB 1 Target RGB chip 
5. 2. 1 Target Z chip 
6. Start 11 Starting address 
7. Length 11 Number of pixels to access 
8. Unused 14 Reserved, Inust be zero 
9. ScanoutEnable Read and scanlout 

addressed locations 
10, Unused 1 Reserved, must be zero 
11. Scanout Mode 1 1 = round node, O at no round 
12. WriteFnable Write addressed 

locations from reg 
13. Unused 22 Reserved, must be zero 

The Wait for Scanline DMA Completion Token is used to 
determine if the back buffer is done scanning out or clearing 
the data, and is illustrated in Chart I. As the stage 2 and stage 
3 processing units are double buffered, one buffer may be 
scanned out while the other is being written to. If the back 
buffer scanout is not completed, the stallout signal is 
asserted. This prevents the swapping of buffers. Once the 
scanout is completed, the stallout signal is negated. This 
assures that the buffers will not be swapped until the scanout 
is completed. 
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CHART I 
Wait for Scanline DMA Completion Control Token 

Field Width ValuciOse 

1. PSetup False 
2. TokenD 4. 0xF 
3. OpCode 8 3 
4. RGB Target RGB chip 
5. Z Target Z chip 
6. Unused 62 Reserved, must be zero 

When a complete Z-Buffer or compositing operation is 
completed for an entire scanline, the two buffers may be 
swapped. The Swap Buffers Control Token illustrated in 
Chart J. Once the buffers have been swapped, the back buffer 
can be cleared or scanned out using the DMA setup/start 
token described above. 

CHART 
Swap Buffers Control Token 

Field Width Value/Use 

1. PSetup False 
2. TokenD 4. 0xF 
3. Opcode 8 4 
4. RGB Target RGB chip 
5. Z 1 Target Z chip 
6. Unused 62 Reserved, must be zero 

The Global mode setup token is used to initialize the 
pipeline to the type of rendering that will be performed, e.g. 
using a specular or diffuse rendering model, enable shad 
owing and the transparency mode. Each of the rendering 
type operations are discussed in detail above. The Global 
mode setup control token is illustrated in Chart K. 

CHARTK 
Global Mode Setup Control Token 

Field Width Waluefise 

1. PSetup False 
2. TokenD 4. 0xF 
3. OpCode 8 5 
4. DiffuseShade Enable diffuse shading 

contribution 
5. SpecularShade 1 Enable specular shading 

contribution 
6. Shadow Count 1 Enable shadow count 
7. ShadowTest 1 Enable shadow test 
8. TransMode 1 = additive, O = blended 
9. ControlRlags 2 Indicate control/data, 

and pipeline interlock 
10. InvertShadow 1 1 = in shadow is visible, 

O it out of shadwo is visible 
11. Force2Visible 1 1= force Z test to return 

'visible' 
12. DisableZWrite 1 = don't allow 

Zishadow bits to be written 
13. Unused 54 Reserved, must be zero 

The Jam control token is used to used to permit the token 
to pass through the processing unit without any processing. 
It is typically used to send control information out the 
bottom of the pipeline. The Jam Data Control Token is 
illustrated in Chart L. 
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CHARTL 
Jam Data Control Token 

Field Width Walue. Use 

1. PSetup False 
2. TokenD 4. 0xF 
3. OpCode 8 6 
4. Unused 24 Garbage 
5. Data 40 Data to scanout 

DESCRIPTION OF PROCESSING STAGE 
CIRCUITRY 

In the preferred embodiment, each of the successive 
stages in the pipeline are implemented as individual inte 
grated circuits. Each of these chips embodies several mod 
ules which carry out the functionality of the stage. It is of 
note that in the preferred embodiment, the stages 2 and 3 are 
implemented via the same integrated circuit. The choice of 
operation as a Stage 2 or 3 is determined by certain control 
inputs that are provided to the chip. However, it would be 
apparent to one skilled in the art to combine multiple 
discrete processing units in order to eliminate transfer time 
that may occur because of any "off-chip' data transfers that 
may be required. It would also be apparent to one skilled in 
the art to configure the system of the preferred embodiment 
utilizing more discrete processing units, e.g. creating two 
stage one processing units performing vertical and horizon 
tal interpolation set-up tasks. Such different hardware imple 
mentations would not cause a departure of spirit and scope 
from the present invention. 
Clock Domains of the Rendering Architecture 
To simplify system integration, the pipeline has three 

asynchronous clock domains. The Data Clock is used by the 
input port of the stage one processing unit. The Data Clock 
is typically synchronous to the data source and defines the 
maximum speed at which data can be transferred to the 
rendering pipeline. 
The Pipe Clock drives the processing units within the 

pipeline (with the exception of the input port of the stage one 
processing unit) and effectively defines the shading speed of 
the pipeline. It is significant that the Pipe Clock is asyn 
chronous to the rest of the rendering system, so that the Pipe 
Clock may be increased to match future generations of chip 
technology, without effecting the rest of the system. 
The Scanout Clock is used by the Scanout of the the last 

stage of the rendering pipeline and is synchronous to a 
receiving device, e.g. the system frame buffer. The Scanout 
Clock controls the maximum rate at which pixels are 
scanned out of the on-chip scanline buffer. 
Stage 1 Functional Schematic 

FIG. 11 illustrates the functional blocks of the Stage 1 
chip. An input block, 1101, provides an input FIFO and 
clock rate conversion. As data, e.g. object primitives from 
the active object list, are input into the rendering pipeline 
where they are first placed into an input FIFO. It should be 
noted that at this time that the rendering pipeline has three 
asynchronous clock domains. The data clock is used by the 
input port of the first stage and is usually synchronous to the 
data source, i.e. the control processors. The data clock 
defines the maximum speed at which data can be transferred 
to the pipeline. The pipe clock drives the rendering process 
and effectively defines the shading speed of the pipeline. 
Only the internal pipeline chips use this clock, so it can be 
increased to match chip technology without effecting the rest 
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of the system. Pipeline data bandwidth scales with the pipe 
clock. Also, most computation in the Stage 1 chip is driven 
by the pipe clock. The scan-out clock is synchronous to the 
receiving device, e.g. the target frame buffer. It controls the 
maximum rate at which pixels are scanned out of the on chip 
scanline buffer. Thus, as a further function of the input block 
1101, clock rate conversion from the data clock to pipeline 
clock is performed. 
When the data exits the FIFO it enters a command decode 

module 1102. The command decode module 1102 decodes 
the data into the appropriate command structure. Most of the 
commands are decoded by a programmable logic array 
(PLA). The exceptions are the draw command and the 
overlay pixels command. As described above, the draw 
command is the fundamental command for drawing an 
object. 
The remainder of the modules respond accordingly to a 

DRAW command. Briefly, two functional modules are then 
entered to initiate vertical and horizontal interpolations. 
These are vertex sort 1103 and vertical divide 1104. The 
vertex sort 1103 is used to determine the active edges of an 
object that is to be drawn. The vertical divide 1104 is used 
to determine the interpolation weight value that will be used 
for vertical interpolation. The vertical interpolation and 
horizontal interpolation functional modules then follow and 
are described above. Finally, the outputs of vertical inter 
polation module 1105 and horizontal interpolation module 
1106 feed into a token assembly module 1107 for creation of 
a token. Once the token is created it is sent down the pipeline 
synchronized to the pipeline clock. 
Input Block 
The STAGE 1 chip is designed with a 64 bit input path, 

which can be configured as one or two 32 bit ports, or a 
single 64 bit port. The STAGE 1 chip is capable of process 
ing four independent input streams, SRCID pins are used to 
indicate the source of each transfer. What this means is that 
up to four control processors may send data to the rendering 
pipeline(s). 
Two synchronous FIFOs receive the data from the two 32 

bit ports, permitting burst transfer rates of 64 bits/dock. 
However, once past the FIFOs, the two data streams merge 
into one 32 bit path, for a maximum sustained bandwidth of 
one 32 bit word/clock; this is roughly balanced to the 
sustained throughput of the remainder of the chip. Two extra 
bits are added to each word to indicate the source ID. 
Finally, the merged data stream is synchronized to the Pipe 
dock domain by a one word/clock synchronizer. 
The preferred embodiment utilizes 16 word deep FIFOs, 

providing 64 bytes of buffering for each input port in Dual 
32 and Single 64 input modes. However, in Single 32 mode, 
Port A ping-pong between the two FIFOs, effectively dou 
bling depth. The FIFOs are compiled, so the depth may be 
increased in alternative embodiments. 
A further function provided in Stage 1 is flow control. 

Flow control is used to prevent overrun of input buffers of 
the stage 1 FIFO. Flow control is achieved with a STALL 
signal for signalling to the control processor to stop sending 
data. Additionally, an EMPTY signal is provided and can be 
used to drive DMA bursts (i.e. for signalling to the control 
processors to commence sending data). When the EMPTY 
signal is provided, the pipeline(s) will accept a predeter 
mined number of data transfers prior to asserting the STALL 
signal. 

Because it is the first chip in the pipe, the STAGE 1 chip 
must perform vertical interpolation on all the data types 
necessary for different rendering functions. Because it is 
difficult to predict what data types will be necessary in the 
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future, the STAGE 1 chip is designed to process a generic 
data type called a parameter, which represents data in any of 
a variety of supported data types. 

Each parameter has two data types associated with it: the 
input format, which represents the format in which the data 
is input into STAGE 1, and the processing format, which is 
the internal format in which the STAGE 1 chip stores, 
interpolates and sends the data down the pipe. Input formats 
are chosen to be well aligned and easy to manipulate for the 
control processors. Processing formats represent the actual 
minimum precision necessary for the data. For example, the 
input format of a normal vector might be three 16 bit signed 
integers, while the processing format is three 12 bit signed 
integers. The STAGE 1 chip supports five input formats and 
four processing formats as illustrated in the following Charts 
M and N. 

CHARTM 
Data Input Formats 

Input Input Data 
Format Type Nunn Fields Size Typical Use 

4x8U Unsigned 8 4 32 bits RGBA 
bit int 

3x10S Signed 3 32 bits Vector 
11.11.10 bit 

int 
3x16S Signed 16 bit 3 64 bits Vector 

int 
2x16U Unsigned 16 2 32 bits X, Y 

bit int 
x32U Unsigned 32 l 32 bits Z. 

bit int 

CHARTN 
Processing Formats 

Processing Num 
Format Type Fields Storage Size Typical Use 

4x9U Unsigned 9 4 36 bits RGBA 
bit int 

3x12S Signed 12 bit. 3 36 bits Vector 
int 

2x16U Unsigned 16 2 36 bits X, Y 
bit int 

1x32U Unsigned 32 1 36 bits Z. 
bit int 

Only the 3x12S format used for vectors is signed. It 
would be apparent to provide a more flexible design that 
would permit any parameter to be specified as signed or 
unsigned. The format information for the different vertex 
types is stored in an Input Data Format RAM; this RAM is 
loaded by the host processor, so new parameters can be 
added as required. Each DRAW command sent to the stage 
processing unit includes FormatAddress, the address of the 
appropriate vertex format description. The first word holds 
the number of words of data for each vertex; it's read and 
loaded into a 5 bit counter, which counts the words as they 
are formatted and output. The format information is re-read 
for each subsequent vertex until the Draw command is 
complete. 

In the preferred embodiment, only two parameter data 
types are fixed: the X and Y projected screen co-ordinates of 
each vertex are 16 bit unsigned ints, in a 13.3 format. This 
format addresses a 213=8192X8192 pixel screen space with 
% of a pixel resolution and pixel centers at 0.50. 
Command Decode 
When received in STAGE 1, the DRAW command is 

handled by circuit logic in the STAGE 1 processing unit. 
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Most other commands are single 32 bit words, which are 
decoded by a PLA. The exception is the Overlay Pixels 
command, which requires two 12 bit counters, one to 
compute pixel address, the other to count pixels. 
The Command Decode Module generates one token per 

clock; a token either writes a control register, writes a 
location in the vertex parameter RAM, or renders a span of 
a triangle. 
Vertex Sort 
As described above, the Draw command draws a triangle 

between vertices V, V and V, each of which specifies one 
of the four vertices stored in the parameter RAM. The Vertex 
Sort module then fetches the Y coordinate of each of the 
three vertices, and determines which two edges of the 
triangle are active (i.e. intersect with the horizontal line 
specified by the contents of the YCurrent register which 
defines the current scanline). If two active edges are found, 
the triangle is visible, and the top and bottom Y of both 
edges are passed to a Vertical Divide module. Although the 
vertices are sorted vertically, the horizontal span start and 
end points have not yet been calculated, so the edges are 
arbitrarily designated A and B. Later, when the X co 
ordinates have been interpolated, the final left/right test is 
performed, and the edges are swapped if necessary. 
As described above, an edge is considered visible/active 

if it satisfies this equation: 

Yaops currentscanlines-Bottom 

where the Y co-ordinate increases from top to bottom. 
Note that the test is not Y(FYcensin.<=Ye 
tom, which would occasionally cause boundary pixels 
between abutted polygons to be rendered twice (a 
serious problem when rendering transparent objects). 

Vertical Divide 
The Vertical Divide module has two active dividers, 

which calculate the interpolation weight of the two edges A 
and B: 

WA-(YBottoma-currentscantine)/(YbottomA-Y.TopA) 

W=( Bottomb currentscanline) (BottombTepp) 

These calculations are performed to 12 bits of accuracy, 
requiring six clocks of latency (radix2 subtract-and-shift 
divide, two stages per clock). The interpolation weights are 
passed directly to the Vertical Interpolation to determine 
span coordinates and parameter values. 

In the preferred embodiment all vertex parameters are 
stored in four 64x36 RAM. The address for a given param 
eter is a concatenation of the parameter number and the 
stream context (vertex number selects between RAMs). By 
using four RAMs, a parameter can be simultaneously read 
for all four vertices; combined with a 4x436 bit crosspoint 
switch, the tip and bottom parameter values for both active 
edges can be simultaneously read and transferred to linear 
interpolators (LIRPs) for generation of the parameter values. 
STAGE 2 and 3 Functional Description 

In the preferred embodiment, the processing units for 
stages 2 and 3 are identical. This is a desirable since it 
provides for economic efficiencies in the manufacture of the 
pipeline components. It is apparent that the same component 
may be used when the requirements of a stage one process 
ing unit and a stage two processing unit are compared. When 
performing Scanline Z-buffering or operating as a compos 
iting engine, both require at least one complete scanline of 
memory. In the preferred embodiment two complete scan 
lines of memory have been provided in order to support 
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double buffering and to allow scanouts of a previously 
rendered scanline while a new scanline is being rendered. 
Both require linear interpolation of RGB values. In stage 
two it is the generated ambient RGB values and in stage 
three it is the blended alpha values used for transparency. 
Finally, both require identical pipeline control signals (e.g. 
stall signals) and means for sending and receiving signals. 

However, some differences do exist. First, Z-buffer and 
shadowing logic is not needed by the compositing engine. 
Second, the scanout of the stage 3 compositing engine is 
synchronous with the receiving device and as in a different 
clock domain from the pipeline. However, these differences 
are minor So that the economies of manufacture would 
outweigh any potential advantages of having separate com 
ponents. 
A Zchipin signal is used to configure the processing unit. 

When the Zchipin signal is high, the unit is configured as a 
stage 2 Z-buffer. Conversely, when the Zchipin signal is low, 
the unit is configured as a stage 3 compositing engine. The 
functions performed when configured as a Z-buffer are 
Z-Search; shadow calculation and ambient color calculation. 
The functions performed when configured as a compositing 
engine are pixel blending and scanout. 

FIG. 12 is a functional block diagram of a stage % 
processing unit. A RAM 1201 and a RAM 1202 comprise 
the dual buffers and consist of one scanline of memory each. 
In the preferred embodiment each of RAM 1201 and 1202 
comprise 648 words (each word having 40 bits) of random 
access memory. RAM control 1203 receives the X data (i.e. 
the pixel location) from the pixel interpolation token and 
provides corresponding Z-values to the Z interpolation and 
compare module 1204 and corresponding oRGB values to 
the ORGB interpolation module 1205. 
The Z-interpolation and compare module 1204 performs 

the Z-buffering required to identify the front-most pixels. 
The Z-interpolation and compare module 1204 further 
receives the endpoint Z-values 1208 and 1209 from the Z 
set-up token and the pixel weight W 1210 from the pixel 
interpolation token. The Z-interpolation and compare mod 
ule 1204 is coupled to the RAM control 1203 to receive the 
Current Z-value at a pixel location and for inserting a new 
Z-value into the scanline Z-buffer when appropriate (i.e. the 
Z-value of the current pixel is less than the current value in 
the Z-buffer). The Z-interpolation and compare module 1204 
is further coupled to output control 1206 for allowing the 
output of a front-most pixel via the pixel interpolation token 
(typically by not converting it to a null token). 
The ORGB interpolation module 1205 performs the initial 

ambient color calculation of stage 2 and the transparency 
calculations of stage 3. The ORGB interpolation module 
1205 receives the pixel weight W 1210 from the pixel 
interpolation token. The otRGB interpolation module 1205 
further receives the endpoint oRGB values 1212 and 1213 
from the diffuse span set-up token. With respect to stage 3, 
the ORGB module 1205 is coupled to RAM control 1203 in 
order to received pixel shading values at the current pixel 
location and for inserting shaded (blended) pixel values back 
into the scanline buffer. Both the Z-Interpolation and com 
pare module 1204 and the ORGB interpolation module 1205 
contain linear interpolation circuits that are described in 
more detail below. 
Output control 1206 controls output 1214 from the pro 

cessing unit. The output 1214 of the output control 1206 will 
be a pixel interpolation token in stage 2 and the scanout in 
stage 3. In stage 2, the output control 1206 will output the 
contents of the interpolation module 1205 as part of the pixel 
interpolation token. In stage 3, the output control 1206 will 
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output the contents of the scanline buffer, i.e. RAM 1201 or 
RAM 1202. 
Circuit for calculating the WCX) function 

Recall that the function WOX) function is used in the 
Vertical Interpolation Module. As it is repetitively used, the 
preferred embodiment has provided an efficient means for 
calculating the W(X) function. As any given X is a 16 bit 
value, the slope m covers a wide range, i.e. 1 to 1/65535. 
Representing this range to 10 significant bits requires 
16+10-26 bits. Thus, at first view the W(X) function would 
require a 26 bit by 16 bit multiplier. However, a technique 
and circuit for obtaining the 10 bit result with a 12 bit by 12 
bit multiplication operation has been derived and is 
described below. 

First, it is empirically observed that 14 leading zeros are 
being traded between the two multiplicands. This is further 
supported by the observation that (Xright-Xleft) is the 
maximum value of (X-X left), thereby indicating the 
minimum number of leading Zeros in this multiplicand. This 
is established by comparing the two multiplicands as illus 
trated in Chart O. 

CHART O 

Value of 
Xright-Xleft Leading 0s Value of m Leading 0s 

2-3 14 112-1/3 0-1 
4-7 13 114-117 1-2 
8-15 12 118-115 2-3 

32768-65535 O 1/32768-1165536 14-15 

First, the 14 leading zeros are replaced with two variables 
m' and AX based on n leading 0s, so that: 

Since both m' and AX' do not have leading Zeros, both can 
be truncated to the 12 most significant bits (10 significant 
bits plus 2 guard bits). 

Aschematic diagram of such a circuit is illustrated in FIG. 
13. The circuit will calculate m' and AX' and output W. 
Referring to FIG. 13 circuitry within dashed box 1312 
represents the calculation of m' while the circuitry within the 
dashed box 1313 represents the calculation of AX". A span 
length 1301, is provided as a first input to the circuit within 
dashed box 1312. The span length 1301 is simply the 
difference of X, X as described above. A counting 
circuit 1304, determines the number of leading zeros in span 
length 1301 and provides an output value n. The count of 
leading zeros n is input to a shift circuit 1307. The shift 
circuit 1307 will be described in greater detail below. The 
span length 1301 is also provided to a shift circuit 1305. The 
shift circuit 1305 shifts the value of spanlength 1301 by the 
n bits determined in counting circuit 1304. The output of the 
of the shift circuit 1305 is the 12 left most bits after the 
shifting of the span length 1301. The output of the shift 
circuit 1305 is then input into an inverting circuit 1306, 
which inverts the input. The output of the inverting circuit is 
the variable m'. The output m' of the invert circuit is then 
provided as a first input to a multiplication circuit 1310. 
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An X input 1302, i.e. the current X-coordinate of the 

pixel being interpolated, is combined with a binary input 
1302a (which has a fixed value of 100 binary) to a create a 
16 bit operand for a subtraction circuit 1309. The binary 
input 1302a are added as the leading bits in the created 
operand. The second input to the subtraction circuit 1309 is 
a X input 1303. The X 1302 input provides the X 
coordinate of the point that is the left most on the span being 
processed. Thirteen bits of the output of the subtraction 
circuit 1309 are provided to a 13 bit counter 1308. Three of 
the bits are stripped off and recombined at the output of the 
counter circuit 1308. The output of the counter circuit 1308 
is AX. The output of the counter 1308, along with the 
appended 3 bits are then provided to the shift circuit 1307 
where the result is shifted by the value provided by the 
counter 1304, i.e. n. Further, the four least significant bits of 
the result are discarded, creating a 12 bit output. This output 
value is AX". 
The output of circuit 1307 is then provided as a second 

input to the multiplier 1310. The multiplier 1310 then 
preforms a multiplication of the outputs of inverting circuit 
1306 (i.e. m') and shifting circuit 1307 (i.e. AX) and rounds 
to the ten most significant bits. The output of the multiplier 
1310 is the pixel weighting value W 1311. 

Linear Interpolation Function 
As described throughout the description of the preferred 

embodiment, all interpolation is performed linearly. It would 
have been apparent to one skilled in the art to use other 
non-linear forms of interpolation in order to provide differ 
ent shading functionality (e.g. perspective corrected shad 
ing). As has been discussed above, a direct evaluation 
technique is utilized by the preferred embodiment in order to 
perform required linear interpolation (as opposed to the 
forward differencing technique that prevails in the prior art). 
With reference to stage 1, linear interpolation is used to 
determine the endpoints of the horizontal spans of an object 
(i.e. in vertical interpolation). With respect to stage 2 and 
stage 3 of the pipeline, linear interpolation is performed on 
the values in the pixel interpolation token to estimate 
Z-values (stage 2) or pixel shading values (stage 3). Thus, it 
has been found to be advantageous to provide a linear 
interpolation circuit. 
As described above, the equation for direct LIRP function 

is defined as: 

The LIRP function requires a weighting value w. The 
weighting value w is a value between 0 and 1 that specifies 
a linear “blend' of the values A and B. Determination of W 
in the creation of Pixel Interpolation Tokens was described 
above. W is also calculated for vertical interpolation the w 
is determined dynamically for each active edge of an object. 
For horizontal interpolation the where corresponds to the 
pixel weighting value determined in stage 1. The result of 
this expression is A if w is zero, B if w is one, and a value 
between A and B when w is a positive fraction less than one. 
The LIRP operation of the preferred embodiment operates 

in fixed precision arithmetic. Implementing the LIRP opera 
tion in fixed precision arithmetic can be wasteful. If w is 
defined as a binary fraction between zero and one inclusive 
almost an entire bit of resolution is wasted. In the case where 
w has 4 bits, 7 encodable values between 1.001 and 1.111 
will always be unused. 

In the preferred embodiment, a more efficient approach to 
encoding w defines 0.1111 to be one and 0.0000 to be zero. 
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All 16 encodable values where w has 4 bits are now useful. 
The LIRP equation now becomes: 

If w=0.0000, the LIRP value will be 0.1111A. If 
w=0.1111, the LIRP value will be 0.111 B. However, in 
graphics applications it is known that in order to achieve 
high quality rendering, if w=0 or 0.0000, the LIRP value 
must be A and if w=1 or 0.1111, the LIRP value must be B. 
This is to achieve complete color saturation at the end 
points. A rounding factor is therefore added to the LIRP 
value to achieve saturation at both A and B0.0001A is added 
if waC). 1000. 0.0001B is added if we=0.000. These round 
ing factors force saturation at both ends of the range of w, 
while tolerating some discrepancies to true linearity at some 
midpoints. 

With the addition of this rounding factor w no longer 
partitions the range between A and B quite uniformly. The 
partition between the LIRP values when w-0.01.11 and when 
w=0.1000 can be up to twice as large as the partition 
between any other two neighboring values of w. The size of 
this partition is, however, no larger than the size of every 
partition when w is encoded in the standard way described 
above. 

In describing a circuit to perform the LIRP equation, the 
fixed point version of the LIRP equation above is re-written 
using two's complement math as follows: 

Replacing w with it's two's complement equivalent (w is 
the bit inverse of w): 

and rearranging terms: 

(O. 111--0.0001)+(w))A-i-wB 

The first term drops out in two's complement form, leaving 
only: 

Not incidentally, this approach leads to a very regular (and 
thus compact and efficient) custom silicon layout. Convert 
ing to one bit multiplications by summing for i=0 to n, where 
n is the number of bits-1 in w (4 for this example) and wn 
is the most significant bit of w gives: 

This equation can be efficiently computed by using a selector 
for each bit w to select between adding A or B (shifted 
appropriately by 2"). 
Adding in the appropriate rounding factor to force satu 

ration gives: 

Adding the rounding factors to the circuit described above is 
simply done by adding one new selector at the least signifi 
cant bit position. 

Referring now to FIG. 14a, a circuit for linear interpola 
tion is illustrated. The LIRP circuit is comprised essentially 
of 2 to 1 multiplexers, carry sum adders, and a 10 bit carry 
propagate adder. The LIRP circuit implements the logic 
described above where the bits of the Weighting Value W are 
used to select the output of the 2 to 1 multiplexors. The 
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outputs of the multiplexors are added and the bit patterns are 
shifted appropriately to reflect the magnitude of the oper 
ands. As the circuit is somewhat repetitive, a description of 
a portion of the circuit will suffice. 
A first input A 1401 is provided as a first input to the 

multiplexer 1403 and a second input B 1402 is a second 
input to the multiplexer 1403. The values of input. A 1401 
and B 1402 would typically be one of the pairs of parameter 
values sent through the pipeline in a set-up token. A third 
input, i.e. a selector value, is the value which will determine 
whether the first input or the second input will be output 
from the multiplexer 1403. The selector value to be provided 
to the multiplexor is a bit from the weighting value. For the 
multiplexor 1403, the selection value is provided by the 
most significant bit of the Weighting Value W, in this case 
W91431. This value is the additive saturation value needed 
in order to achieve full saturation at the extreme ends. In any 
event, it should be noted that if the selection value is a l, the 
first input is output from the multiplexer, i.e. the bit pattern 
from A 1401. If the selection value is 0 the second input is 
output from the multiplexer, i.e. the bit pattern from B 1402. 
The bit layout of the weighting value W is illustrated in 

FIG. 14b. As is typical in computer representations, e.g., 
binary representations, of numeric values, the least signifi 
cant digit values are in the right most storage position. So for 
example, a digit W0 1432 will be the least significant digit 
and a digit W1 1433 is the second least significant digit. This 
continues from right to left storage locations unit. W91450, 
which is the most significant digit. Further illustrated in FIG. 
14b are the digits of W coupled to corresponding multiplex 
ors as described with respect to FIG. 14a. 

Referring back to FIG. 14a, the output of the multiplexor 
1403 is coupled to a carry-in input 1406 of carry-sum adder 
1405. It is also clear from FIG. 14a that the values A 1401 
and B 1402 will be used as input to all the multiplexer 
devices. 
A second multiplexer 1404 also takes as input A1401 and 

B 1402. The multiplexer 1404 receives as input the least 
significant bit of the Weighting Value, in this case W0 1432. 
The output of the multiplexor 1404 is coupled to an operand 
input 1406a of the carry-sum adder 1405. 
The carry-sum adder 1405 provides for the addition of the 

Saturation value and of the lowest order set of bits in the 
multiplication (i.e. linear interpolation operation) it is per 
forming. A carry out output 1407 and a sum output 1408 of 
the carry-saver adder 1405 are coupled to an operand input 
A 1412 and an operand input B 1413, respectively, of 
carry-sum adder 1414. 
The multiplexor 1409 takes as selector input the the 

second least significant bit of the Weighting Value, in this 
case W11433. The output of the multiplexor 1409 is also an 
input to the carry-save adder 1414. 
The additive values cascade down the combination of 

multiplexors and carry-sum adder devices until multiplexer 
1417 is reached. In multiplexer 1417, the input is the most 
significant bit of the weighting value, in this case W91434. 
Again, input values A 1401 and B 1402 are inputs to the 
multiplexor 1417. The output of the multiplexor 1417 is 
coupled to a carry-in input 1419 of carry-sum adder 1418. In 
accordance with the description of the circuit above, operand 
inputs A1420 and operand input B 1421 of carry-sum adder 
1418 are coupled to the carry-out output and sum output, 
respectively, of a previous carry-sum adder (not illustratcd). 
The carry-out output 1423 and sum 1424 of carry-sum adder 
1418 are coupled to an operand input B 1426 and operand 
input A 1425, respectively, of carry-propagate adder 1422. 
The sum output 1429 of the carry-propagate adder 1422 will 
be the approximated linearly interpolated value. 
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It should be noted that the above circuit may be used for 
determining a linearly interpolated value for data of varied 
bit sizes. In the preferred embodiment the weighting value 
and inputs A and B are 10 bits in length. 

Parallel Rendering Pipelines 
The ability to support multiple rendering pipelines in 

parallel is inherent in the architecture of the preferred 
embodiment of the present invention. First, as parameter 
values are directly evaluated, there are no inter scanline 
dependencies. Thus, two or more scanlines can be rendered 
simultaneously. As described above this scanline indepen 
dence also has residual effects in terms of reducing band 
width requirements and storage requirements. Second, spe 
cific features have been provided to facilitate parallelism. 
Some of these features have been described above with 
respect to a single pipeline. Here they are described in the 
context of parallel rendering pipelines. 

It should first be noted that the Parallel Rendering Pipe 
lines in the preferred embodiment will receive identical 
Active Object Lists. Thus, the control processor must pro 
vide an Active Object List that would cover multiple scan 
lines. In the preferred embodiment, the Active Object List 
may be built by assigning a value to a variable, where the 
variable represents the number of scanlines upon which to 
build the Active Object List. Having such an Active Object 
List means that in some instances, objects will be visible on 
one scanline, but not visible on the scanline being simulta 
neously rendered. This would occur for example if an object 
is last visible on scanline N, where scanlines N and N+1 are 
being simultaneously rendered. This may also occur when 
an object is first visible on scanline N+1 and thus is not 
visible on scanline N. As will be described in more detail 
below, the filtering of objects that should not be rendered is 
handled in the Stage 1 processing element. 
The architecture of the Stage 1 processing element pro 

vides for parallel pipelines in the following manner. First, 
and perhaps most importantly, as the stage 1 processing 
element directly evaluates object information to interpolate 
span coordinates, scanline independence is achieved during 
vertical interpolation. Scanline independence facilitates the 
rendering of scanlines in parallel by eliminating the need for 
objects to be rendered in scanline order (as required by 
forward differencing interpolation techniques). Second, the 
vertical interpolation function filters objects. This is accom 
plished by determining if an object is active on the scanline 
being rendered. An object is not active on a scanline if there 
are no corresponding active edges. If an object is not active 
on a particular scanline, it will not be rendered. 

Third, to avoid saturating DMA bandwidth between the 
active object list and the pipeline, the pipelines are designed 
to simultaneously receive objects. As a result, the required 
data bandwidth does not increase as parallel pipelines are 
added. Fourth, as the pipelines each receive the same object 
data, the Stage 1 processing unit of each pipeline must be 
able to distinguish which scanline should be rendered. 
Accordingly, each stage 1 processing unit defines two input 
signals which define the particular pipeline ID. The ID can 
be used to load a different Y value into each of the pipeline, 
the Y-value indicating the scanline to be rendered. 

Finally, the horizontal interpolation of stage 1 supports the 
parallel pipelines in that it sets up the direct evaluation of 
shading parameter values in succeeding processing stage 
elements. The second and third stages of the pipeline per 
form the direct evaluation of shading parameters. As noted 
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above, such direct evaluation of shading parameters is 
necessary for scanline independence. 

With respect to the third/final stage processing element, 
besides directly evaluating the shading parameter values, the 
output lines of the third stage scanline buffers may be 
tristated. This allows the outputlines of the scanline buffers 
of multiple pipelines to be connected together. External 
control logic provided by, for example the control processor, 
would then control which of the scanline buffers would be 
in a tristate and which one would be enabled and thus 
providing rendered scanlines to the system display buffer. 

FIG. 15 is a flowchart illustrating the steps for rendering 
a 3D image using multiple parallel pipelines. For this 
example there are two parallel pipelines. First, the control 
processor sends a direct input stream command to designate 
which of the pipelines, the input streams should be sent to, 
step 1501. In this case the direct input stream command will 
designate both pipelines will receive the input stream (dis 
tinguish from step 1507 where input is not sent to both 
pipelines). Next, the control processor will send global mode 
set-up tokens to designate the desired shading functions, 
step 1502. At this point the rendering pipeline is ready to 
receive the DRAW commands for drawing the individual 
objects. 
The contents of the active object list is now sent simul 

taneously to each of the rendering pipelines, step 1503. As 
noted above this occurs by the issuance of a DRAW com 
mand for that object being sent down the pipeline. Next, 
rendering occurs, step 1504. This rendering step is identical 
to that which would occur for a single pipeline. This 
rendering step is identical to the rendering steps described 
with respect to FIGS. 8a–8c. Once the rendering process is 
completed, the scanout of the rendered scanlines may occur. 
The initial step in the scanout process is for the control 

processor to determine that a previous scanout is complete. 
This is accomplished by the control processor propagating a 
scanout synchronization token, step 1505. Once it is deter 
mined that the previous scanout is complete, a swap buffers 
token is propagated, step 1506. By doing this, the scanout 
process can be performed while the rendering of other 
scanlines can commence. The control processor then propa 
gates a setup/start token to enable the scanout of the ren 
dered scanlines, step 1507. The scanout of a scanline buffer 
from the first pipeline to the system frame buffer is per 
formed, step 1508. To perform this step the scanline buffer 
output of the second pipeline is first placed in atristate. Once 
this is completed, the scanout of a scanline buffer from the 
second pipeline to the system frame buffer is performed, step 
1509. To perform this step the output of the first pipeline is 
placed in a tristate. It should be noted that the pipeline 
scanout sequence may be switched, i.e. the second pipeline 
performs the scanout first. Such a switch in the scanout 
sequence may be performed without departing from the 
spirit and scope of the present invention. As in the case of 
a single pipeline, the parallel rendering pipelines may be 
rendering subsequent scanlines while scanning out the pre 
vious scanlines. 

Thus, a scanline rendering device is disclosed. Utilizing a 
scanline approach to hardware rendering of graphical 
objects, required bandwidth to a system frame buffer is 
reduced thus enabling the rendering device to be extensible 
to existing computer system designs. Scanline independence 
is achieved through direct evaluation of coordinate param 
eter values, and enables multiple parallel rendering devices. 
Distributed parameter interpolation reduces bandwidth 
requirements between shading elements in the rendering 
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device. Finally, a linear interpolation method provides for 
the exact calculation at extreme endpoints and allows for 
efficient use of data. 
We claim: 
1. A rendering device for use in a computer system, said 

computer system having a system processor, a system frame 
buffer and a system bus, said system bus for communicating 
information to and from said system processor, said render 
ing device comprised of: 

a) bus attachment means, said bus attachment means for 
coupling to said system bus; 

b) a Scanline rendering means coupled to said bus attach 
ment means, said scanline rendering means for gener 
ating a Scanline of shaded pixel values said scanline 
rendering means further including a first object pro 
cessing means for identifying a horizontal span of an 
object corresponding to a scanline being rendered, said 
Scanline rendering means for generating each shaded 
pixel value of said shaded pixel values from a corre 
sponding token, a first token including a first interpo 
lation weight value for a first pixel, said scanline 
rendering means for generating a first Z-value from 
said first interpolation weight and Z-values for end 
points of said horizontal scan, said scanline rendering 
means further including a means for determining 
whether said first token should be converted to a null 
token based upon said first Z-value; and 

c) a system frame buffer coupling means coupled to said 
Scanline rendering means, said system frame buffer 
coupling means for transferring said scanline of shaded 
pixel values to said system frame buffer. 

2. The rendering device as recited in claim 1 wherein said 
scanline rendering means is comprised of: 

a) a front-end processor for generating an active object list 
of graphical objects that are active on a scanline being 
rendered; 

b) a first object processing means for identifying horizon 
tal spans of an object corresponding to a scanline being 
rendered; and 

c) a pixel shading means for generating a pixel shading 
value for a pixel. 

3. The rendering device as recited in claim 2 wherein said 
scanline rendering means is further comprised of a pixel 
compositing means for generating blended pixel values 
using all objects being active for said scanline being ren 
dered. 

4. The rendering device as recited in claim 1 wherein said 
Scanline rendering means is comprised of: 

a) graphical object input means, said graphical object 
input means for receiving an active object list from said 
system processor, and 

a pixel shading means for generating a pixel shading 
value for a pixel. 

5. The rendering device as recited in claim 4 wherein said 
scanline rendering means is further comprised of a pixel 
compositing means for generating blended pixel values 
using all objects being active for said scanline being ren 
dered. 

6. The rendering device of claim 1 wherein said scanline 
rendering means is further for determining activation infor 
mation for an object received by said bus attachment means, 
and for causing said activation information to be transmitted 
to said system processor. 

7. The rendering device of claim 6 wherein said computer 
System includes a memory, coupled to said system proces 
sor, for storing said activation information, and 
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wherein said system processor causes said activation 

information to be stored in said memory, and wherein 
said system processor accesses said activation infor 
mation from said memory, and wherein said scanline 
rendering means generates said scanline according to 
said activation information. 

8. Arendering device for rendering 3-D graphical images, 
Said rendering device coupled to a computer system, said 
computer system having a system processor, a database 
having a plurality of graphical objects, a display and a 
system frame buffer, said system frame buffer containing 
pixel shading values, said rendering device providing pixel 
shading values to said system frame buffer, said rendering 
device comprised of: 

a) A processor coupling means, said processor coupling 
means for coupling said rendering device to said sys 
tem processor, 

b) a scanline rendering means for generating a scanline of 
pixel shading values from a plurality of graphical 
objects, said Scanline rendering means including an . 
span identifying means for identifying at least a first 
span of an object corresponding to a scanline being 
rendered, said Scanline rendering means for generating 
each shaded pixel value of said shaded pixel values 
from a corresponding token, a first token including a 
first interpolation weight value for a first pixel, said 
Scanline rendering means for generating a first Z-value 
from said first interpolation weight and Z-values of 
endpoints of said first span, said scanline rendering 
means for determining whether said first token should 
be converted to a null token based upon said first 
Z-value, and 

c) a Scanout means for transferring a scanline of rendered 
pixels to said system frame buffer. 

9. A rendering device comprising: 
a) a bus communications circuit, for communicating data 

with a host processor; 
b) a Scanline rendering circuit, being coupled to said bus 

communications circuit, for identifying a horizontal 
span of a scanline for an object, said scanline rendering 
circuit further for generating pixel values for said 
scanline, said scanline rendering circuit being coupled 
in communication with a Z-buffer, said scanline ren 
dering circuit for determining a Z-value for a pixel 
from Z-values of endpoints of said horizontal span and 
a weight in a corresponding pixel token, said scanline 
rendering circuit for converting said pixel token to a 
null token if said Z-value is greater than a Z-value at a 
corresponding pixel location in said Z-buffer, and 

c) a frame buffer communications circuit, being coupled 
to said scanline rendering circuit, for communicating 
said pixel values for a scanline to a frame buffer. 

10. The rendering device of claim 9 wherein said scanline 
rendering circuit includes a front-end processor, said scan 
line rendering circuit, using said front-end processor, is 
further for generating activation information for an object 
received by said scanline rendering circuit and for causing 
said activation information to be communicated to said host 
processor. 

11. The rendering device of claim 10 wherein said scan 
line rendering circuit includes a rendering pipeline, being 
coupled to said front-end processor, for generating said pixel 
values, and wherein said front-end processor is further for 
generating an active object list and control signals for 
controlling said rendering pipeline. 

12. The rendering device of claim 11 wherein said scan 
line rendering circuit includes a memory for storing said 



5,517,603 
41 

active object list, said memory being coupled to said front 
end processor and said rendering pipeline. 

13. A system for rendering objects in a 3D object data 
base, comprising: 

a) a host processor, for managing said 3D object database, 5 
for generating an activation list from said 3D object 
database, and for generating an active object list from 
said 3D object database; 

b) a bus communications circuit, being coupled in com 
munications with said host processor, for communicat 
ing data with said host processor; 

c) a first rendering pipeline, being coupled to said bus 

42 
14. The system of claim 13 further comprising a second 

rendering pipeline, being coupled to said bus communica 
tions circuit for generating scanline pixel shading values 
responsive to receiving an object in said active object list, 
and wherein said frame buffer communications circuit is 
coupled to said second rendering pipeline. 

15. A rendering device for use in a computer system, said 
computer system having a system process, a system frame 

10 buffer and a system bus, said system bus for communicating 
information to and from said system processor, said render 
ing device comprised of: 

communications circuit, for generating scanline pixel 
shading values responsive to receiving objects in said 

a) a bus attacher for coupling to said system bus; 
active object list; 15 b) a scanline renderer coupled to said bus attacher, said 

d) a horizontal interpolation circuit for identifying spans scanline enderer for generating al scanline of shaded 
of pixels of each object in an active object list, each pixel values, said scanline renderer further including a 
horizontal span being identified by a pair of end coor- first object processor for identifying a horizontal span 
dinates and a corresponding Z pair, said horizontal 20 of an object corresponding to a scanline being rendered 
interpolation circuit for generating a plurality of pixel and a Zpair for endpoints of said horizontal span, said 
interpolation tokens from each horizontal span, each scanline renderer being coupled to a Z-buffer, said 
pligion token including a shaded color value scanline renderer for generating a pixel interpolation 

ken f h pixel. wherein said interpolation tok 
e) a hidden surface removal circuit, using said plurality of 25 to d O cac R d A. said d E. alO I CI 

pixel interpolation tokens, for generating pixel shading 1C es a. weig y sa scanline renderer for converting 
values and a Z-value for each of said plurality of pixel a first pixel interpolation token to a first null token after 
interpolation tokens from said weight and said Z. pair, determining that a Z-value for said first pixel interpo 
said hidden surface removal circuit being coupled to a lation token is greater than a Z-value of a correspond 
Z-buffer, said hidden surface removal circuit for con- 30 ing pixel in said Z-buffer, wherein said Z-value is 
verting a first pixel interpolation token to a first null computed using said weight and said Z. pair, said 
token after determining that said Z-value for said first derer f id shaded pixel val pixel interpolation token is greater than a Z-value of a Scanline renderer for generating Sald Shaded pixel val 
corresponding pixel in said Z-buffer; ues from non-null pixel interpolation tokens; and 

f) a frame buffer for storing and providing pixel shading 35 c) a System frame buffer coupler to said Scanline renderer, 
values: and 

g) a frame buffer communications circuit, being coupled 
to said first rendering pipeline and said frame buffer, for 
communicating said scanline pixel shading values to 
said frame buffer. 

said system frame buffer coupler for transferring said 
scanline of shaded pixel values to said system frame 
buffer. 


