
|||||H||
USOO55926O1A

2 O United States Patent (19) 11 Patent Numb 5,592,601
Kelley et al. 45 Date of Patent: Jan. 7, 1997

(54) METHOD AND APPARATUS FOR 5,253,335 10/1993 Mochizuki et al. 395/122
INCREMENTAL ACCELERATION OF THE 5,261,041 11/1993 Susman........... ... 395/152

ENESISTENS 29: 32 Estest et alm 12: a is CCC a a

E. SCANLINE RENDE G 5,278,949 1/1994 Thayer 395/126
5,307,449 4/1994 Kelley et al. 395/119
5,392,385 2/1995 Evangelisti et al..... ... 395.31

75 Inventors: Michael W. Kelley, San Mateo; 5,402,147 3/1995 Chen et al. 34.5/15
Shou-Chern Yen, Sunnyvale, both of
Calif. OTHER PUBLICATIONS

Kelley et al., "A Scalable Hardware Render Accelerator
73 Assignee: AREle Computer, Inc., Cupertino, Using a Modified Scanline Algorithm", Computer Graphics,

Jul., 1992, pp. 241-248.
J. D. Foley et al., "Second Edition Computer Graphics

(21) Appl. No.: 316,233 Principles and Practice.” 1990, pp. 885, 886, 899,900.
22 Filed: Sep. 30, 1994 L. Wyats Emilitics." Computer Graphics,

VOl. 1, NO. 5, Jui. , pp. 1- i.
Related U.S. Application Data H. Fuchs, "Pixel-Planes 5: A Heterogeneous Multiprocessor

Graphics System Using Processor Enhanced Memories,'
63 Continuation-in-part of Ser. No. 232,831, Apr. 22, 1994. Computer Graphics, vol. 23, No. 3, Jul. 1989, pp. 79-88.

Akeley, et al., "High-Performance Polygon Rendering," 6
51) int. Cl. .. G06F S/OO Computer Graphics, vol. 22, No. 4, Aug. 1988, pp. 239-246.
52) U.S. Cl. 395/143 M. Oka et al., “Real-Time Manipulation of Tex
58) Field of Search - - - - - - - - - - - - - - - a - 395/140, 141, ture-Mapped Surfaces,' Computer Graphics, vol. 21, No. 4,

3957142, 143,345/118, 135 Jul. 1987, pp. 181-188.
s M. Deering, et al., “The Triangle Processor and Normal

(56) References Cited Vector Shader: A VLSI System for High Performance
U.S. PATENT DOCUMENTS Graphics,' Computer Graphics, vol. 22, No. 4, Aug. 1988,

pp. 21-30.
4,594,673 6/1986 Holly 364,522
4,658,247 4/1987 Gharachorloo 340/747 (List continued on next page.)
2. E. E.ckel - - - - a a - - - - - - - - - - - - - - - 340,729 Primary Examiner-Phu K. Nguyen
wk aw atin 364,518 A A Fi Blakev, Sokoloff, Tavlor & Zaf 4,866,637 9/1989 Gonzalez-Lopez et al. 364,518 ttorney, Agent, or Firm-Blakely, Sokoloti, Taylor

4,885,703 12/1989 Deering 364,522 al
4,897,803 1/1990 Calarco et al. 364/58
4,945,500 7/1990 Deering 364,522 57 ABSTRACT
5,001,651 3/1991 Rehme et al. 364/58 A method for providing objects to a rendering circuit. The
29: 4. E. St.et a". or E. method comprises the steps of: generating an active list, the
9 . . . SSO a

5,123,085 6/1992 Wells et al. 364/518 AEf AE
5,128,872 7/1992 Malachowsky et al. 395/62 ooje ry; g
5.157.388 10/1992 Kohn a subset of objects in a second memory, the second memory
5,214.753 51993 Lee et al. . . 395/25 having a faster access time than the first memory, and
5,222,204 6/1993 Swanson 395/127 providing the active list to the rendering circuit.
5,226,147 7/1993 Fujishima et al....................... 395,425
5,249,264 9/1993 Matsumoto 395/134 12 Claims, 11 Drawing Sheets

KEYBOAR
522

SoNo
RECORONG

ANOAYBACK
WCE

AN
Mory

oSAY
control

SAY
4S

RSS
SRAGE
DEWCE

SAC
MEMORY

5,592,601
Page 2

OTHER PUBLICATIONS

D. Kirk et al., “The Rendering Architecture of the DN
10000VS," Computer Graphics, vol. 24, No. 4, Aug. 1990,
pp. 299-307.
Burgoon, Dave, "Pipelined Graphics Engine Speeds 3-D
Image Control", Electronic Design, No. 17, Jul. 23, 1987,
pp. 143-146, 148, 150.

Dowdell, Casey et al., “Scalable Graphics Enhancements for
PA-RISC Workstations”, Feb. 24-28, 1992 Spring COMP
CON 92, Thirty-Seventh IEEE Computer Society Interna
tional Conference, pp. 122-128.
Grimes, J., "The Intel i860 64-Bit Processor: A Gener
al-Purpose CPU with 3D Graphics Capabilities', IEEE
Computer Graphics and Applications, Jul. 9, 1989, No. 4,
pp. 85-94.

U.S. Patent Jan. 7, 1997 Sheet 1 of 11 5,592,601

A
102

B C
103 104

Figure Ia

105

106
i07

108

109

110

111

109

Figure Ib

U.S. Patent Jan. 7, 1997 Sheet 2 of 11 5,592,601

BUILD OBJECT
ACTIVATION
DATABASE

201

BUILD ACTIVE
OBJECT FOR

SCANLINE TO BE
RENDERED

2O2

RENDER
SCANNE

2O3

UPDATE ACTIVE
OBJECT LIST

205

YES

Figure 2
(Prior Art)

U.S. Patent Jan. 7, 1997 Sheet 3 of 11 5,592,601

329

y
324 RESULTING OBJECT

SCREEN 325 ACTIVATIONLIST 27
(10 SCANLINES HIGH)

O no objects

B,C

2 no objects

3 no objects

4. no objects

5 A

6 no objects

7 no objects

8 no objects 328

9 no objects

Figure 3a
(Prior Art)

U.S. Patent Jan. 7, 1997 Sheet 4 of 11 5,592,601

340

ACTIVE OBJECT 1.
LIST STATUS: RENDERED

SCREEN

no objects
B,C 11

B,C

341

B,C

B,C

B.A

A

A

A

no objects

345 343 342

Figure 3b
(Prior Art)

U.S. Patent Jan. 7, 1997 Sheet 5 of 11 5,592,601

MEMORY

MEMORY
BUS
4 1

OBJECT ACCESS
CONTROLLER

420

OBJECT
BUS
42

SCANLINE
RENDERING
CIRCUIT

4 40

RENDERED
SCANNE BUS

44

FRAME BUFFER

450

DSPLAY
460

Figure 4
(Prior Art)

U.S. Patent Jan. 7, 1997 Sheet 6 of 11 5,592,601

MASS
MAN STATIC STORAGE

MEMORY MEMORY DEVICE

504 506 507

KEYBOARD
522

CURSOR
CONTROL DISPLAY

CONTROL
510

523

HARD COPY
DEVICE

524

DISPLAY
SOUND 460

RECORDING
AND PLAYBACK

DEVICE
525

Figure 5

U.S. Patent Jan. 7, 1997 Sheet 7 of 11 5,592,601

MEMORY

40

MEMORY
BUS
41

ACTIVE LIST OBJECT CACHE
Y CONTROLLER CACHE MEMOR

62O BUS 630
63

OBJECT
BUS
421

SCANNE
RENDERING
CIRCUIT

440

RENDERED
SCANLINE BUS

44

FRAME BUFFER

450

DISPLAY
46 O

Figure 6

U.S. Patent Jan. 7, 1997 Sheet 8 of 11 5,592,601

BUS
70

MEMORY

41 O

SCANNE
PREFETCH

70

CACHE
MISS OBJECT OBJECT

RECQUEST CACHE CACHE
735 CONTROL MEMORY

720 CACHE
BUS 630
63

701

ACTIVE LIST
CIRCUIT

730

OBJECT BUS
42

SCANLINE
RENDERING
CIRCUIT

440

RENDERED
SCANNE

BUS
441

FRAME BUFFER
450

Figure 7
DSPLAY 460

U.S. Patent Jan. 7, 1997 Sheet 10 of 11 5,592,601

- 900 MEMORY

ACTIVE LIST
CONTROLLER 1

ACTIVE LIST
CONTROLLER 2 CACHE 2

915

CACHE

925

SCAN LINE
RENDERING
CIRCUIT

SCAN LINE
RENDERNG
CIRCUIT in

930 - - 940

FRAME
BUFFER - 950

DISPLAY - 960

Figure 9

U.S. Patent Jan. 7, 1997 Sheet 11 of 11 5,592,601

NEXT - 985

- 975
GEOMETRIC
OBJECT
DATA

Figure 10a

Figure 10b

5,592,601
1.

METHOD AND APPARATUS FOR
INCREMENTAL ACCELERATION OF THE

RENDERING PROCESS UTILIZING
MULTIPLE SCANLINE RENDERNG

DEVICES

1. RELATED APPLICATIONS

This application is a continuation-in-part of U.S. appli
cation Ser. No. 08/232,831, filed Apr. 22, 1994, entitled
"Method and Apparatus for Cacheing Objects.”

BACKGROUND OF THE INVENTION

2. FIELD OF THE INVENTION

The present invention relates to the field of image display
in a computer system. In particular, the present invention
relates to the field of scanline rendering of objects to
generate the image.

3. ART BACKGROUND

As the processing capability of computer systems has
grown, the need for more complex and better graphical
representation of images has also grown. Many vocations
use computer system as a fundamental tool. For example, in
the area of architectural design, three dimensional (3D)
graphical images of building, or other structures, can be
dynamically created and manipulated using computer sys
tems. The computer system can capture, and process, the
necessary image data much faster than can be done manu
ally. As computer hardware technology advances, so has the
development of various techniques for rapidly displaying,
and manipulating, these images.
A 3D image is represented in a computer system as a

collection of graphical objects. A computer system displays
these objects on a display device (for example, a cathode ray
tube (CRT)). All the objects are processed by the computer
system, and some of them are displayed on the display
device. The reason that only some of objects are displayed
is that only some of the them can be seen from a given
viewpoint. The computer decides which objects can be seen
from a particular viewpoint using each object's depth
parameters. In displaying hundreds, or thousands of objects,
to make a single image, it is clear that the computer system
performs an enormous number of calculations.

Computer graphics systems typically include a display
control, and a display device. The display control often
includes a frame buffer. The frame buffer is a digital memory
for storing the image to be displayed as a series of binary
values. The display device includes a screen having an array
of picture elements, known as pixels. Each pixel represents
a dot on the screen, and each pixel can be programmed to a
particular color or intensity. Thousands of individual pixels,
so programmed, are used to represent a displayed image. It
is these individual pixel values which are stored in the frame
buffer. A display controller reads the data from the frame
buffer and converts it into a video signal. The video signal
is fed to the monitor which displays the image.

Images are repeatedly rendered into the display over and
over again, with each new frame representing a new position
or shape of the image to be viewed. Rendered means
creating a pixel representation of something. The image
must be repeatedly sent to the monitor in order to maintain
a steady picture on the screen. Due to characteristics of the
human eye, the monitor needs to be refreshed at a minimum

10

5

20

30

35

40

45

50

55

65

2
of 30 times a second. Otherwise, the display will flicker in
a very annoying and distracting manner. In today's computer
graphics systems, the refresh frequency is typically around
72 hertz (i.e., 72 times a second). A faster refresh rate
produces less flicker. Hence, the duration for displaying an
image is relatively small, approximately /72 of a second or
14 milliseconds. Given these constraints, it is imperative to
speed up the graphics drawing process to avoid sluggish
response times and jerky movements of displayed images.
Moreover, the faster an image can be drawn, the more
information which can be provided to the display. This
results in smoother, more dynamic, and crisper images.

FIG. la illustrates an object that can be displayed by a
computer system. Typically, the objects are polygons, and
typically, the polygons are triangles. In this example, tri
angle 101 has three vertices: vertex A102; vertex B 103; and
vertex C 104. For the purposes of illustration, a triangle is
used throughout this description, however, it should be noted
that any object capable of being represented on a computer
display can be used.
One technique for displaying triangle 101 is called scan

line rendering. A display comprises a number of scanlines.
Each scanline is the width of a pixel on the display. Most
computer displays have hundreds of scanlines and display
hundreds of thousands of pixels. In scanline rendering, a
computer display image is created one scanline at a time.
Therefore, for each scanline, all the objects that have a
portion to be displayed on that scanline are rendered. These
objects are said to be active for that scanline.

FIG. 1b illustrates the triangle of FIG. 1a as it would be
scanline displayed. Triangle 101 is mapped to the display
scanlines 105-111. Thus, for each scanline 105-111, some
pixels will be displayed that represent triangle 101. Triangle
101 is said to be active for scanlines 105-111. That is, for
each of those scanlines, it must be determined if some
portion of triangle 101 must be displayed. For example, a
rendered scanline 108 includes pixels 109 representing a
portion of triangle 101.

In this example, scanline 108 could include portions, or
all, of other objects. Remember that only objects, that are not
blocked by other objects, and are active for a particular
scanline, will be rendered on that scanline. Therefore, there
can be many active objects for a scanline, but only the
objects that can be seen will be rendered for that scanline.

FIG. 2 is a flowchart illustrating a scanline method for
rendering an image. At step 20, all the image's objects are
Sorted in order of their activation scanline. An activation
scanline is the first scanline that an object. Scanlines are
typically counted from 0, where 0 is the top scanline of the
display. Thus, in the previous example, triangle 201’s acti
vation scanline will be scanline 105. The next step 202 is to
build the active object list for the first scanline to be
rendered. This active object list contains all the objects that
are active for the first scanline. At step 203, the first scanline
is rendered.

At step 204, if not all the scanlines have been rendered,
then at step 205, the active object list is updated for the next
Scanline. That is, the first scanline's active objects, that are
not active for the second scanline, are removed from the list;
the objects not active for the first scanline, but that are active
for the second scanline, are added to the list, and the objects
that are active for both the first and second scanlines remain
in the list. After updating the active object list, the next
scanline is rendered at step 203. Steps 203-205 are repeated
until all the scanlines for the display have been rendered.

Note, for simplicity throughout this description, each list
can be thought of as comprising a set of zero or more

5,592,601
3

objects. However, in practice, each list may only contain a
reference to zero or more objects. One skilled in the art will
understand when a list contains only references to objects,
and when a list contains the objects themselves.
FIG.3a illustrates an object activation list as used in step

201 of the scanline method of FIG. 2. In this image, triangle
A321, triangle B 322 and triangle C 323 make up an image
to be displayed. Each triangle has an activation scanline.
Triangle A, determined by vertex 326, has an activation
scanline of 5. Triangle B, determined by vertex 324, has an
activation scanline of 1. Triangle C, determined by vertex
325, has an activation scanline of 1. From these activation
scanlines, the object activation list 329 can be generated.
Thus, for the object activation list entry corresponding to
scanline 0, no objects are listed. For the entry corresponding
to scanline 1, B 322 and C 323 are listed, shown as entry
327. No objects are listed for entries 2-4. For the entry 328
corresponding to scanline 5, triangle A 321 is listed. No
objects are listed for entries 6-8.
FIG.3b illustrates the active object list status 340 for each

scanline rendered from the FIG. 3a example. Note that only
one active object list is kept at any one time. Active object
list340 merely indicates the state of the active object list for
each scanline as that scanline is rendered. At step 202, the
active object list for scanline 0 is generated. The active
object list is empty for rendering scanline 0 because no
objects are active on that scanline. Thus, at step 203, no
objects will be rendered for scanline 0. At step 204, the
computer system determines that more scanlines need be
generated. At step 205, the active object list is updated to
include both triangles B 322 and C 323, shown as 341.
Scanline 1 is then rendered using the objects in the active
object list (B322 and C323). Steps 203-205 are repeated for
scanlines 2-4. Note that the active object list does not
change during these steps as both B322 and C323 are active
for scanlines 2-4.
At step 205, in preparation for scanline 5 generation, the

active object list is different, shown as 342. C 323 is not
active for scanline 5, and is therefore removed from the list.
However, A 321 becomes active on scanline 5, and is
therefore added to the list. Scanline 5 is then rendered with
objects B 322 and A321.
At step 205, in preparation for scanline 6 generation, the

activation list is changed, shown as 343. B 322 is not active
for scanline 6, and is therefore removed from the list. Note
that A 321 is still active, and is therefore left in the active
object list. Not until the preparation of scanline 9, is A321
removed from the active object list.

Thus, all the objects representing a computer image can
be rendered. This rendering generates an entire computer
display image, one scanline at a time.

FIG. 4 illustrates one prior art system for rendering
objects on a display. Memory 410 stores the objects used to
make the computer display image. This means that the
objects in the object activation list are stored in the memory
410. These objects are communicated to an object access
control 420 over memory bus 411. Object access control
420, and rendering circuit 430, perform steps 202-205. The
object access control 420 maintains the active object list as
each scanline is rendered. The object access control 420 also
passes the objects in the active object list to rendering circuit
430. The objectinformation is passed via the object bus 421.
Rendering circuit 430 generates a scanline from the objects
in each received active object list. Each generated scanline
is passed to frame buffer 440 via rendered scanline bus 441.
Display 450 displays the pixels stored in the frame buffer
440 to produce the computer display image.

10

15

20

30

35

45

50

55

60

65

4
To reduce the cost of the prior art system, memory 410 is

typically Dynamic Random Access Memory (DRAM). One
problem with this system is that DRAM has a relatively slow
access time. The active list, passed to the rendering circuit,
contains the information for all the objects in that list. For
each scanline, the object access control 420 must access
memory 410 for each object in the corresponding active
object list. Therefore, the speed of these accesses to memory
410 are a limiting factor in prior art systems.

In a typical prior art system, each object, in the active list,
requires approximately 100 bytes of memory. However,
desirable quality computer graphics display can be achieved
if 10 Mbytes/s of information transfer is sustained between
object control access 420 and rendering circuit 430. This
means that 10Mbytes/s of active list objects is transferred to
the rendering circuit 430. In this system, a similar informa
tion transfer rate between memory 410 and object access
control 420, need be maintained, or a bottleneck occurs.
That is, if memory 410 cannot supply 10 Mbytes/s to object
access control 420, then the object access control 420 cannot
maintain a supply of 10 Mbytes/s to the rendering circuit.
Therefore, in prior art systems, either higher cost compo
nents are used in memory 410, DRAM would not likely
suffice, or the quality of the computer graphics is reduced.
Neither of these solutions are particularly desirable. There
fore, what is needed is a system that provides low cost,
quality computer graphics display. Further, what is needed is
a scanline rendering system where the object memory access
time does not act as a bottleneck to the rendering of objects.
Also, what is desired is to be able to supply a scanline
rendering circuit a large number of active objects while still
using relatively low cost, but slow access, DRAM memory
components to store the objects making up the computer
display image.
An improved apparatus and method for rendering objects

is needed.

SUMMARY OF THE INVENTION

An improved method and apparatus for rendering objects
is described. One embodiment of the present invention
allows objects to be stored in a fast memory to provide
improved system performance while maintaining a low cost
system. An active list of objects is generated. The list
includes a first subset of objects that are stored in a first
memory. The first subset of objects are accessed and are
stored in a second memory, where the second memory has
a faster access time than the first memory. The list is then
provided to the rendering circuit. Note that because some of
the objects are stored in the fast memory, if those objects are
needed again, access to those objects will require much less
time.

In another embodiment, the list includes a second subset
of objects. The second memory includes the second subset
of objects. The first subset of objects and the second subset
of objects are provided to the rendering circuit. Note that the
second subset of objects are provided from the faster second
memory, providing better system performance.

In another embodiment, a second active list is generated.
Objects included in the first active list, but not in the second
active list are marked as no longer being used. This frees up
storage in the second memory, for use by other objects.

In another embodiment, the first active list is generated,
and the first subset of objects is accessed, while a next
scanline is being rendered. This allows objects to be stored
before they are needed. In another embodiment, the active

5,592,601
5

list is provided while objects are being rendered in a present
Scanline.

In another embodiment, the address of each object is
changed when it is stored in the second memory. To deter
mine whether an object is stored in the second memory, an
address comparison is performed.

In another embodiment, main memory is utilized to
contain portions of the active list that cannot be stored in the
cache memory. Each object includes a plurality of pointers,
one for each active list controller in order to identify the
objects in the active list which are maintained in the main
memory.

Although a great deal of detail has been included in the
description and figures, the invention is defined by the scope
of the claims. Only limitations found in those claims apply
to the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not limitation, in the figures. Like references indicate
similar elements.

FIG. 1a illustrates an object that can be displayed on a
computer display.

FIG. 1b illustrates the object of FIG. 1a mapped for
display.

FIG. 2 is a flowchart illustrating a scanline method for
rendering an image.

FIG. 3a illustrates an object activation list as used in the
scanline method.

FIG. 3b illustrates the active object list status for each
scanline rendered from the FIG. 3a example.

FIG. 4 illustrates a prior art system for the scanline
rendering of objects.

FIG. 5 illustrates a computer system in which the present
invention may be implemented.

FIG. 6 illustrates a system for caching objects to be
rendered.

FIG. 7 illustrates another embodiment of a system cach
ing objects to be rendered.

FIG. 8 is a flowchart illustrating a method of caching
objects to be rendered.

FIG. 9 illustrates an alternate embodiment in which
multiple scanline circuits are used to render and main
memory is used to store portions of the active object lists
when the cache associated with a particular scan line circuit
is full.

FIG. 10a is illustrative of the active object list data
structure stored in main memory and FIG.10b illustrates the
use of pointers to maintain portions of the active object list
in main memory for two scanline rendering devices.

DETAILED DESCRIPTION OF THE
INVENTION

An improved apparatus and method for rendering objects
is described. In the following description, numerous specific
details are set forth, such as activation lists, cache control
methods, etc., in order to provide a thorough understanding
of the present invention. It will be obvious, however, to one
skilled in the art, that the present invention may be practiced
without these specific details. In other instances, well-known
circuits, structures and techniques have not been shown in
detail in order not to unnecessarily obscure the present
invention.

O

15

20

25

30

35

45

50

55

65

6
Referring to FIG. 5, the computer system upon which an

embodiment of the present invention can be implemented is
shown as 500. Computer system 500 comprises a bus 501,
or other communications hardware and software, for com
municating information, and a processor 509 coupled with
bus 501 for processing information. System 500 further
comprises a random access memory (RAM) or other
dynamic storage device 504 (referred to as main memory),
coupled to bus 50 for storing information and instructions
to be executed by processor 509. Main memory 504 also
may be used for storing temporary variables or other inter
mediate information during execution of instructions by
processor 509. In one embodiment, main memory 504 is
used to store portions of the active list which do not fit into
the cache memory of an active list controller. Computer
system 500 also comprises a read only memory (ROM) 506,
and/or other static storage device, coupled to bus 501 for
storing static information and instructions for processor 509.
Data storage device 507 is coupled to bus 501 for storing
information and instructions. Data storage device 507 can be
a magnetic disk or optical disk, and its corresponding disk
drive, or any other storage medium. Memory 410, of FIG.4,
could include any, or all, of these types of memory/data
storage devices. However, typically, memory 410 only
includes the main memory 504.
Computer system 500 can also be coupled via bus 501 to

display control 510. Display control 510 generates the
necessary signal for display device 460 to display informa
tion to a computer user. Display control 510 can include a
frame buffer, and specialized graphics rendering devices.
Display 460 can include a cathode ray tube (CRT), and/or a
flat panel display, or any other display device.
An alphanumeric input device 522, including alphanu

meric and other keys, is typically coupled to bus 501 for
communicating information and command selections to
processor 509. Another type of user input device is cursor
control 523, such as a mouse, a trackball, a pen, a touch
screen, or cursor direction keys for communicating direction
information and command selections to processor 509, and
for controlling cursor movement on display 460. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g.,x) and a second axis (e.g.,y), which allows the
device to specify positions in a plane. However, this inven
tion should not be limited to input devices with only two
degrees of freedom.

Another device which may be coupled to bus 501 is a hard
copy device 524 which may be used for printing instruc
tions, data, or other information on a medium such as paper,
film, or similar types of media. Additionally, computer
system 500 can be coupled to a device for sound recording,
and/or playback 525, such as an audio digitizer coupled to
a microphone for recording information. Further, the device
may include a speaker which is coupled to a digital to analog
(D/A) converter for playing back the digitized sounds.
Finally, computer system 500 can be a terminal in a com
puter network (e.g.,a LAN).

A SYSTEM FOR CACHING OBJECTS TO BE
RENDERED

As noted previously, what is needed is a system that
provides low cost, quality computer graphics display. The
present invention provides one solution to this problem. One
embodiment allows a rendering circuit to render the objects
in the active object list, without having significant impact
from a slow object memory. It has been discovered that with

5,592,601
7

little additional cost, the negative impact on performance of
a DRAM's slow access time can be overcome.

FIG. 6 illustrates a general overview of one embodiment
of the present invention. Memory 410 is coupled to active
list controller 620. Object cache memory 630 is also coupled
to the active list controller 620 via cache bus 631. The active
list controller 620 provides the objects in an active list to the
scanline rendering circuit 440, via object bus 421. It has
been discovered that caching objects in the active list
reduces the negative effects of slow access to memory 410.
That is, by temporarily storing the objects, of the active
objects list, in a much faster memory, a much higher
communication rate of objects to the scanline rendering
circuit can be sustained.
As mentioned previously, memory 410 can include any of

a number of storage devices/media, all being able to store
mass amounts of information at a relatively low cost. This
means that hundreds, or thousands, of objects can be stored
in memory 410. Further, memory 410 can store application
programs for manipulating the objects, and for performing
other system operations.
The following illustrates the operation of active list con

troller 620 and object cache 630. Assume that the objects of
FIG.3b are to be cached. To render scanline 0, the active list
controller 620 need not provide any objects to scanline
rendering circuit 440. Scanline rendering circuit 440 will
produce scanline 0, with no portions of any objects repre
sented, and pass this to frame buffer 450.

Next, scanline 1 is processed. The active list controller
620 adds objects B 322 and C 323 to it's active object list.
As these objects are not cached in object cache memory 630,
these objects are then requested from memory 410. When
memory 410 provides objects B 322 and C 323, active list
controller 620 provides B 322 and C 323 to the scanline
rendering circuit 440. Note that until this point, this embodi
ment operates similarly to the prior art of FIG. 4. However
the present embodiment now differs in that the active list
controller 620 also stores B 322 and C323 in object cache
memory 630. The advantage of this will be seen in the
rendering of the next scanline.

Scanline 2 is then processed. The active list controller 620
does not change the active object list because both B322 and
C 323 remain active for this scanline. The active list
controller 620 then checks to determine whether the objects
in the active object list have been cached. In this case, object
cache memory 630 has B 322 and C323 stored. The active
list controller 620 retrieves B 322 and C 323 from object
cache memory 630. Remember that object cache memory
630 is relatively small, but much faster than memory 410.
Thus, for scanline 2, the active list controller 620 can
provide B 322 and C 323 to scanline rendering circuit 440
in much less time than was required for scanline 1. For
scanlines 3 and 4, the same steps are followed and B 322 and
C 323 are provided in the much shorter time.

Scanline 5 is then processed. The active list controller 620
updates the active object list to that shown at 342. Active list
controller 620 requests A 321 from memory 410. While
memory 410 is processing the request, active list controller
620 can request B322 and C323 from object cache memory
630. In one embodiment of the present invention, B 322 and
C 323 can be provided to scanline rendering circuit 440
while memory 410 is processing the request for A321. In
another embodiment of the present invention, active list
controller 620 communicates the objects in the active object
list in the same order as the objects appear in the list. In any
case, the objects of active object list, at stage 342, can be

10

15

20

25

30

35

45

50

55

65

8
provided to the scanline rendering circuit 440 in less time
than the prior art system of FIG. 4. This is because only one
object need be requested from slow memory 410. As with
objects B 322 and C 323, the first time they are received
from memory 410, they are stored in object cache memory
630.

Scanline 6 is then processed. Active list controller 620
updates the active list to the state shown at 343. The active
list controller 620 determines that object cache memory 630
contains A321, and accesses object cache memory 630.
Again, because object cache memory 630 is accessed, rather
than memory 410, active list controller 620 can communi
cate A321 to scanline rendering circuit 440 in less time than
is required by the prior art system. The remaining scanlines
can then be rendered without having to access memory 410.

Note that when object cache memory 630 is full, any of
a number of well known cache invalidation techniques can
be used. These cache invalidation techniques free storage in
the cache for use by other data. For example, the least
recently used object in the cache can be replaced by an
object received from memory 401, or a random object in
object cache memory 630 can be replaced by an incoming
object. However, as is discussed later, it has been discovered
that a particular cache replacement system provides signifi
cant cache hit improvements. A cache hit occurs when a
revised object is stored in the cache. This improved cache hit
rate improves the performance of the system. In addition, in
an alternative embodiment, when object cache memory 630
is full, the active list is continued from the cache into main
memory such that cache invalidation does not need to be
performed to free up cache memory.

Thus, the FIG. 6 system can provide improved graphics
display performance by reducing the number of accesses to
memory 410 and thereby increase the number of objects that
the system is capable of rendering. In one embodiment of the
present invention, it has been discovered that using rela
tively small, fast memory components, in object cache
memory 630, greatly improves the performance of the
graphics display system.

In one embodiment of the present invention, memory 410
includes 16 Mbit, 80 ns DRAM. Object cache memory 630
is comprised of synchronous 32 Kbitx36, 12 ns SRAM
(Micron MT58LC32K26M1). The active list controller 620
includes special circuitry for controlling the caching of
objects in the active object list to object cache memory 630.
By caching the active object list, active list controller 620
can quickly access the objects most likely to be required by
the scanline rendering circuit 440.
As is described further in this document, other inventive

aspects of the implementation of the active list controller
620 and object cache memory 630, further increase the
performance of the present embodiment.

FIG. 7 illustrates a view of another embodiment of the
present invention. This embodiment prefetches objects one
scanline before they are needed. This reduces the chance of
an interruption of the rendering process, when an object is
first accessed. This embodiment has further performance
improvements over an embodiment that merely caches the
active object list objects. For example, if scanline rendering
circuit 440 is rendering scanline 4, then scanline prefetch
710 requests objects in scanline 5. This process is described
in greater detail in relation to FIG.8. By prefetching objects
before they are needed, more objects can be rendered per
scanline, improving the image displayed on display 460.

In this embodiment, the active list controller 620 has been
replaced by a scanline prefetch 710, an object cache control

5,592,601
9

720, and an active list circuit 730. The scanline prefetch 710
is coupled to memory 410 via bus 701. The object cache
control 720 is coupled to the scanline prefetch 710 via bus
701. The object cache control 720 is also coupled to object
cache memory 630 via cache bus 631. Active list circuit 730
couples to the object cache control 720 via bus 701.

Scanline prefetch 710 maintains an active object list for
the next scanline to be rendered. Scanline prefetch 710 also
requests, via bus 701, objects contained in the active object
list for the next scanline to be rendered.

Object cache control 720 is for controlling access to
object cache memory 630. Object cache control 720 is also
for storing an object received over bus 701 from memory
410 into object cache memory 630. Of course, object cache
control 720 will only store a received object if there is room
in object cache memory 630.

Active list circuit 730 is for maintaining the active object
list for the present scanline. The active list circuit 730
provides the objects in the active list to scanline rendering
circuit 440, for rendering of the present scanline. Active list
circuit 730 requests the objects in the present active object
list from object cache control 720. If an object is not stored
in object cache memory 630, then active list circuit 730
requests the object from memory 410 via cache miss request
735. An object may not be in cache memory because, there
are too many objects in the present scanline for them all to
be stored in object cache memory, or because memory 410
could not provide all the prefetched objects in time.

In this system, each object is referenced by a particular
address. In one embodiment of the present invention, tradi
tional tags are used to reference cached data. Typically,
cached data is associated with one or more tags. This allows
easy indexing of data. However, it has been discovered that
improved performance can be gained by not providing
additional tags to reference objects stored in object cache
memory 630. Thus, in another embodiment, no additional
tags are needed in object cache memory 630. This allows
more objects to be stored in object cache memory 630. A
reference to an object, stored in object cache memory 630,
is maintained by changing the address of that object as it is
stored in object cache memory 630. The address of the
object is changed such that each cached object will have an
address not found in memory 410. This makes the test to
determine whether a particular object is in the cache (called
a cache hit test) a simple address comparison. Thus, to test
if an object in the present scanline's active object list, active
list circuit 730 need only test if that object's address is
within a certain range.

FIG. 8 illustrates further advantages of the present inven
tion. FIG. 8 illustrates a method of caching objects to be
rendered. This method can be used in the embodiment of
FIG.7. As is discussed below, this method has the following
advantages:

objects are moved from the slow memory to fast cache
memory one scanline before they are required by the
rendering circuits, this decouples the longer access time
of slow memory from the rendering task;

a cached object is kept in the cache until all rendering
references to have completed, thus, any modifications
made to the object during the rendering procedure are
made while the object is in the fast cache memory,
rather than the slow memory, and

objects are retained in the cache for exactly as long as they
are active, therefore, the cache invalidation method
provides more efficient cache use than other heuristics.

Like the prior art method, at step 202, the object activation
list is generated for the image. However, the remaining steps

10

15

20

25

30

35

45

50

55

65

10
differ considerably from the prior art, and provide the
previously mentioned advantages. Steps 801-804 prefetch
the objects in the next scanline's active object list. Steps 810
-813 access the cache memory 630 to provide the scanline
rendering circuit 440 the objects in the present scanline's
active object list. Steps 820–821 mark objects in object
cache memory 630 as being no longer needed, thereby
freeing cache storage for other objects. Typically, the
marked objects are not written back to memory 410. The
marked objects are simply overwritten with new object
information. This is because, once rendered, objects are
usually discarded. The above groups of steps can run in
parallel. One skilled in the art would understand how these
steps can be run in parallel; therefore, to simplify the
description of this embodiment, some details of the parallel
operation have not been included.

Similarly, some detail regarding initialization and final
completion steps of the method have not been included. One
skilled in the art would understand how to implement these
steps, given the description herein.

Beginning with the prefetching steps, step 801 generates
the active object list for the next scan. For example, if
scanline 4 were being rendered by scanline rendering circuit
440, at step 801, the active object list for scanline 5 would
be generated. Next, at step 802, the objects in the next active
object list, but not already in object cache memory 630, are
requested. In one embodiment, scanline prefetch 710 per
forms steps 801 and 802. While performing step 802,
scanline prefetch 710 determines whether each object in the
next scanline's active object list is already stored in object
memory cache 630 (in one embodiment, this test is done
using a simple address comparison). For example, if
prefetch circuit 710 is prefetching objects for scanline 5,
then only object A321 would be requested from memory
410, as objects B 322 and C 323 would already have been
cached.
At step 803, objects received from memory 410 are stored

in object cache memory 630. As mentioned previously, in
one embodiment, object cache control 720 stores all objects,
received from memory 410, in object cache memory 630. Of
course, the object cache control 720 only stores these
received objects if there is room in object cache memory
630.
At step 804, the present scanline's active object list is set

to the next scanline's active object list. This allows the next
scanline to be rendered. For example, if the next active
object list for scanline 5 has been prefetched, in steps
801-804, then the present active object list for scanline 4 has
been rendered, in steps 810-813. Thus, the steps 810-813
can be performed for scanline 5.

While the prefetching steps are being performed, the
present scanline is being rendered. At step 810, the present
scanline's active object list is accessed. Next, step 811, all
the objects in the present active object list are requested and
then provided to the rendering device. In one embodiment,
active list circuit 730 determines whether an object in the
present scanline's active object list is in object cache
memory 630. If the object is in the cache, then that object is
accessed and provided to scanline rendering circuit 440.
Note that because the prefetching steps had already
prefetched the objects for the present scanline, only rarely
will some of the objects not be in the cache. This allows the
rendering of the present scanline to proceed without having
to wait for slow memory 410 accesses. At step 812, the
present scanline is rendered. Note that some of the present
scanline can be rendered, step 812, while objects are being
accessed, and provided, in step 811.

5,592,601
11

Another advantage of the present invention is illustrated
where step 812 involves modifying an object. During ren
dering, an object may be modified, for example, to change
it's associated linked list information. If the object were in
slow memory, not only would the scanline rendering have to
wait for an initial read from the memory, but any modifi
cations to an object would require waiting for a write to the
slow memory. In one embodiment, modifications to an
object can be done by writing to the fast cache memory.
At step 813, the previous scanline's active object list is set

to equal the present scanline's active object list. This allows
objects no longer needed, to be marked as being no longer
needed, thereby freeing up space in the cache memory.
At step 820, the previous scanline's active object list is

accessed. Next, all the objects not needed to render future
scanlines, are marked as being no longer needed. It has been
discovered that these cache invalidation steps are more
efficient than other cache invalidation schemes. Objects are
retained in the cache for exactly as long as they are needed.
For example, if the previous scanline is 5, i.e. scanline 6 is
presently being rendered, then B 322 will be have been
completely render. Therefore, B 322 will no longer be
needed, and the room in the cache can be freed for other
objects.

Another advantage of the use of steps 820–821 occurs
when the present scanline incurs a cache miss. In the rare
circumstances of a cache miss, slow memory must be
accessed to obtain the required object. However, because
slow memory is being accessed, some objects may be
marked as no longer needed, in step 821. Therefore, when
slow memory returns the needed object, there may be room
in the cache to store that object.

Thus, it has been shown that steps 801-804, 810-813, and
820–821, can efficiently render objects in a system having
relatively slow memory. Further, a number of discoveries
have lead to performance improvements in the scanline
rendering of graphical images.

This system is scalable to include multiple scanline ren
dering circuits. This is illustrated by FIG. 9 in which main
memory 900 is coupled to a multiplicity of active list
controller and scanline rendering circuits, in this example,
active list controller 1910 and active list controller 2,920.
Each active list controller has a cache 915, 925 and are
coupled to individual scanline rendering circuits 930 and
940. By providing multiple scanline rendering circuits 930,
940, multiple scanlines can be rendered concurrently and
output to the frame buffer 950 and subsequently to the
display 960.
As described earlier, the active list controller controls the

active object list for the particular scanline rendering circuit.
The active object list is stored in the cache 915,925. The list
is modified as objects are added and removed from the active
object list. An object list database of all objects is maintained
in main memory 900. When an object is added to the active
object list for a particular scanline rendering circuit, the
active list controller copies the object from the memory 900
into the cache 915 and links the object to the active object
list by incorporating the object into the linked list architec
ture used. For example, the linked list architecture includes
a plurality of active objects, each object including the object
data and a pointer to the next active object in the linked list.
Thus, when an active object is added, the linked list is
updated to include the object and similarly, when an object
is no longer active on the scanline, the active list controller
910 removes the object by modification of the appropriate
pointers of the linked list.

However, it is possible that the size of the active object list
will exceed the capacity of the cache 915. If this occurs,

10

15

30

35

45

50

55

60

65

12
items may be removed from the cache 915 in order to make
room for the additional objects Alternatively, main memory
900 is used to store those objects that cannot be stored in the
cache 915. The object data structure stored in main memory
900 includes a next pointer for each scanline rendering
circuit of the system. This is illustrated in FIG. 10a in which
active object data 975 includes next pointer 1980 for
scanline rendering circuit 1 (930, FIG.9) and next n pointer
985 for scanline rendering circuit 940 (FIG. 9). Preferably,
the active list controller 910, 920 is modified to handle the
situation when the cache 915, 920 is full and updates the
pointer of the last active object of the linked list located in
the cache to point to tile location in memory of the first
active object of the linked list that is contained solely in
main memory 900. The next active object would then be
pointed to by the next pointer, for example, next 1980,
associated with the object data 975. As multiple pointers
980, 985 are associated with the single copy of the object
data 975, main memory is not cluttered with multiple copies
of the object data.

Furthermore, the active list controller 910, 920 can
modify the linked list of the active objects, including that
portion of the list located in main memory 900, indepen
dently of other active list controllers operating concurrently.
This is possible by the multiple pointers 980, 985 provided.
Therefore, by using this technique and structure, the ren
dering process can be incrementally accelerated by running
multiple scanline rendering devices in parallel. This is
illustrated in FIG. 10b. FIG. 10b shows two linked lists for
two scanline rendering devices. The first linked list is
identified by pointer 985 and includes objects 1000, 1010,
1020, and 1030. The second linked list includes objects
1000, 1040 and 1030. In addition, utilizing a single set of
control information and geometric information at the main
memory reduces the amount of overhead in rendering the
image. The resulting reduction in overhead increases the
efficiency and thus further reduces the amount of time
required to render an image.
As the cache empties (as active objects are removed from

the active object list), the cache and the main memory can
be updated simply by modifying the pointers in main
memory to reflect that certain objects are stored currently in
the cache. Thus, an object not contained in the active object
list, or an object that is active but located in the cache will
include a null entry to indicate that it is not part of an active
list located on main memory for a particular rendering
device.

It is apparent to one skilled in the art that this embodiment
may be used in conjunction with the prior embodiments
described to provide a more efficient mechanism for ren
dering geometric data on a display device.
An improved apparatus and method for rendering objects

has been described.
What is claimed is:
1. A system for displaying objects on a display, said

system comprising:
a first memory for storing a first set of the objects, each

object having at least one next pointer, which when set
to an object list value, points to a next object in a linked
list of at least a portion of a group of objects active on
the display;

a second memory for storing a second set of the objects,
said second memory having a faster access time than
said first memory, said second set part of the group of
objects active on the display;

at least one scan line rendering device, said scan line
rendering device generating graphic data of the group

5,592,601
13

of objects active on a scan line, said graphic data
utilized to display the objects, said scan line rendering
device further copying objects from the first memory to
the second memory as objects become active and
removing objects from the second memory when an
object is no longer active, said scan line rendering
device further maintaining a list of a portion of the
group of active objects in the first memory when the
second memory is full by providing a pointer to the first
object in the first set of objects that is on the active list
but not stored in the second memory and updating the
next pointer of the object to an object list value that
points to a next object on the active list not stored in the
second memory to provide a linked list of objects in the
first memory on the active object list.

2. The system as set forth in claim 1, wherein the at least
one scan line rendering device comprises multiple scan line
rendering devices, each of said scan line rendering devices
rendering a different set of scan lines of the display, each
object of said first memory comprising multiple next point
ers, each next pointer associated with a different rendering
device such that multiple linked lists of active objects are
maintained using the first set of objects.

3. The system as set forth in claim 1, wherein when an
object of the first set of objects is not on the active object list,
the next pointer is set to a null value.

4. The system as set forth in claim 1, wherein the objects
comprise triangles.

5. The system as set forth in claim 1, wherein the scanline
rendering device comprises an object access controller for
maintaining the group of active object in the first memory
and second memory and a rendering circuit which reads the
active objects of the group of active objects and generates
the graphic data.

6. In a computer system comprising a processor, a first
memory, at least one second memory faster than the first
memory, a display device and at least one rendering device
for rendering active objects on the display device, coupled
via at least one bus, a method for providing active objects to
the rendering circuit comprising the steps of:

storing a first set of objects on the first memory, each of
said objects comprising at least one next pointer, which
when set to an object list value, points to a next active
object in a linked list of objects active on the display;

when an object is identified to be active, copying the
active object on the first memory to the second memory
to become part of an active object list;

if the second memory is full when an object is identified
to be active, providing an active object list pointer from
the second memory to the active object located in the
first set of objects on the first memory to continue the
active object list in the first memory, and setting the
next pointer of the active object to point to the location
in the first memory of a next active object located in the
first set of objects on the first memory, such that a
portion of the active object list comprises a linked list
of active objects not stored in the second memory;

said rendering device accessing the active object list from
the second memory, and when the second memory is
full, said rendering device further accessing the portion
of the active object list located in the first memory and
identified by the linked list of active objects in the first
memory.

10

5

20

25

30

35

45

50

55

14
7. The method as set forth in claim 6, further comprising

the step of removing objects from the active object list
comprising the steps of:

if the object to be removed is located in the second
memory, deleting the object from the second memory;
and

if the object to be removed is located in the first memory,
modifying the next pointer of the prior object that
points to the object to be removed such that the next
pointer of the prior object points to the next object
subsequent to the object to be removed, such that the
object is removed from the linked list of active objects.

8. The method as set forth in claim 7, wherein if the object
to be removed is located in the first memory, set method
further comprising setting the next pointer of the object to be
removed to a null value.

9. The method as set forth in claim 7, wherein if an object
is removed from the second memory and the second
memory is no longer full, copying an active object from the
first memory to the second memory.

10. The method a set forth in claim 6, further comprising
the step of initializing the next pointers to null values.

11. The method as set forth in claim 6, wherein the at least
one rendering device comprises multiple rendering devices
for concurrently rendering multiple scan lines and the at
least one second memory comprises multiple second memo
ries, each one of said second memories associated with one
of the rendering devices, said objects stored on the first
memory comprising multiple next pointers, one of said next
pointers associated with one of the second memories, such
that when one of the second memories is full, a linked list
of active objects associated with the full second memory is
located on the first memory using the next pointers associ
ated with the full second memory;

wherein multiple linked lists are created when multiple
second memories are full by setting the associated next
pointers.

12. A system for displaying objects on a display, said
system comprising:

a first memory for storing a first set of the objects, each
object having at least one next pointer, which when set
to an object list value, points to a next object in a linked
list of at least a portion of a group of objects active on
the display;

a second memory for storing a second set of the objects,
said second memory having a faster access time than
said first memory, said second set part of the group of
objects active on the display;

at least one scan line rendering device,vsaid scan line
rendering device generating graphic data of the group
of objects active on a scan line, said graphic data
utilized to display the objects, said scan line rendering
device further copying objects from the first memory to
the second memory as objects become active and
removing objects from the second memory when an
object is no longer active, said scan line rendering
device further maintaining a list of a portion of the
group of active objects in the first memory when the
second memory is full.

ck k >

