
United States Patent (19)
Kelley et al.

54) METHOD AND APPARATUS FOR DIRECTLY
EVALUATING A PARAMETER
INTERPOLATION FUNCTONUSED IN
RENDERING MAGES IN A GRAPHICS
SYSTEM THAT USES SCREEN
PARTTONING

75) Inventors: Michael W. Kelley, San Mateo;
Stephanie L. Winner, Santa Clara,
both of Calif.

73) Assignee: Apple Computer, Inc., Cupertino,
Calif.

(21) Appl. No.: 492,923
(22 Filed: Jun. 21, 1995
(51) Int. Cl. G06F 15700
52 U.S. C. 395/41
58 Field of Search 395/141, 142, 395/143,345ii1836,38
56 References Cited

U.S. PATENT DOCUMENTS

5,457,775 10/1995 Johnson, Jr. et al. 395/141
OTHER PUBLICATIONS

James D. Foley, et al. Computer Graphics Principles and
Practice, 2nd ed. "Filling Polygons" 1990, pp. 92-95.
Fuchs, Henry, et al., “Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-En
hanced Memories", ACM Computer Graphics, vol. 23, No.
3, Jul. 1989, pp. 79-88.

610

USOO5701405A

11 Patent Number:
(45) Date of Patent:

5,701,405
Dec. 23, 1997

Akeley, Kurt, et al., "High Performance Polygon Render
ing", ACM Computer Graphics, vol. 22, No. 4, Aug. 1988.
pp. 239-246.
Potmesil, Michael, et al, "The Pixel Machine: A Parallel
Image Computer", ACM Computer Graphics, vol. 23, No.3,
pp. 69-78.

Primary Examiner Phu K. Nguyen
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman

57 ABSTRACT

A method and apparatus for directly evaluating a parameter
interpolation function in a computer graphic system that
renders a geometric entity (such as a polygon) by partition
ing a display device into a number of local regions. The
computer graphic system initially determines that a first set
of pixels in a first local region of the display device is
covered by a geometric entity. A geometric entity's bound
ary defining data (e.g., the geometric entity's vertex coor
dinates defined relative to a display device coordinate
system) is employed to generate a local set of coordinates
that are defined relative to a first local coordinate system of
the first local region for all pixels of the first set of pixels.
A first local parameter interpolation function, which repre
sents the parameter values for all pixels of the first set of
pixels when these pixels are defined relative to the first local
coordinate system, is then generated. The local parameter
interpolation function and the local set of coordinates are
used to directly calculate the parameter values of the pixels
of the first set of pixels.

17 Claims, 12 Drawing Sheets

600

605

U.S. Patent Dec. 23, 1997 Sheet 1 of 12 5,701,405

XB YB, PB
B

XA YAPA XC, Yo PC

FIG. 1
(PRIOR ART)

U.S. Patent Dec. 23, 1997 Sheet 3 of 12 5,701,405

PARTITION 1 PARTITION 2

FIG. 3
(PRIOR ART)

5,701,405 Sheet 4 of 12 Dec. 23, 1997 U.S. Patent

ÕT? JOSS0001g

† “?IH

997

U.S. Patent Dec. 23, 1997 Sheet 5 of 12 5,701,405

500

Processor

OOO |50s, OOO 5051 505N

Rendering Rendering
Pipeline #1 Rendering

Pipeline #2 Pipeline #N

FIG. 5

U.S. Patent Dec. 23, 1997 Sheet 6 of 12 5,701,405

FIG. 6

U.S. Patent Dec. 23, 1997 Sheet 7 of 12 5,701,405

Geometric Entity Data

Local Coordinate Generator 705

Global Parameter
Equation Function Transformation 710

Module

Local Parameter Interpolator

Partition Buffer 11. 720

Scan Out Module

FIG. 7

5,701,405 Sheet 9 of 12 Dec. 23, 1997 U.S. Patent

006

† 16 d.

6 "?INH

U.S. Patent Dec. 23, 1997 Sheet 10 of 12 5,701,405

Geometric Entity Data

Local Coordinate Generator 1005

Local Parameter 1010
Interpolation Function 11

Generator

Local Parameter Interpolator - 1015

Partition Buffer 1 1020

Scan Out Module 11 1025

FIG. 10

U.S. Patent Dec. 23, 1997 Sheet 11 of 12 5,701,405

1105

Using first geometric entity's global boundary defining data
to generate a local set of coordinates for all pixels of the first
set of pixels

1110
Generating a first local parameter interpolation function, p
representing the parameter values for all pixels of the first set of
pixels when these pixels are defined relative to the first local
coordinate system

1115
Directly calculating the parameter values of the pixels of the p
first set of pixels by using the local parameter interpolation
function and the local set of coordinates

FIG. 11

U.S. Patent Dec. 23, 1997 Sheet 12 of 12 5,701,405

1205

Receiving (i) a global set of coordinates for the vertices of the p
geometric entity, and (ii) parameter values for the vertices
of the geometric entity

From the global set of coordinates, determining that a first 1210
set of pixels in a first local region of the display device are p
covered by the geometric entity

Using first geometric entity's global boundary defining data
to generate a local set of coordinates for all pixels of the first 1215
set of pixels p

Generating a first local parameter interpolation function,
representing the parameter values for all pixels of the first set of p
pixels when these pixels are defined relative to the first local
coordinate system

Directly calculating the parameter values of the pixels of the as
first set of pixels by using the local parameter interpolation
function and the local set of coordinates

FIG. 12

5,701,405
1

METHOD AND APPARATUS FOR ORECTLY
EWALUATING A PARAMETER

INTERPOLATON FUNCTION USED IN
RENDERNG MAGES IN A GRAPHCS

SYSTEM THAT USES SCREEN
PARTTONING

BACKGROUND OF THE INVENTTON

1. Field of the Invention

The present invention relates to the field of computer
graphics display systems, and particularly to a method and
apparatus for directly evaluating a parameter interpolation
function used in rendering images in a graphics system that
uses screen partitioning.

2. Description of the Related Art
Systems that implement interactive three-dimensional

rendering commonly generate triangles with vertices in
two-dimensional screen coordinates by transforming,
shading, clipping, and projecting three-dimensional graphi
cal objects that are defined in a three-dimensional world
coordinate system. Typically, these screen space triangles
are then rasterized into the screen frame buffer by a method
often called "smooth-shading” or Gouraud shading. This
method involves interpolating one or more parameter values
(such as light intensity values, depth values, texture map
reference values, etc.) across the screen space triangles. For
example, the interpolated parameters may either be used to
compute each pixe's color directly (e.g., if the interpolated
parameters are light intensity values for different wave
lengths of light, such as red, green, and blue light) or
indirectly (e.g., if the interpolated parameters are texture
map reference values for referencing a texture map).
More specifically, assume that a parameter p is to be

interpolated across a screen space triangle, which is shown
in FIG. 1. As shown in this figure, the triangle data specifies
(1) the screen coordinate position of all three triangle
vertices (A, B, and C), and (2) the value of p at each of those
vertices. Note that the x and y values may be pixel
coordinates, or more typically they may specify vertex
position with more precision than the pixel position (often
called sub-pixel positioning). Given these three coordinates
and parameter data sets, it is standard practice to compute a
function which computes the interpolated values of p in
terms of variables x and y. The usual form of this function
is set forth below in equation (1).

In this equation, a, b, and care constants determined by the
vertex data. Once the function p(x,y) has been computed, the
graphics rendering system can evaluate the interpolated
parameter value p(x,y) for each pixel that falls within the
rendered triangle to generate a "smooth-shaded" result.

In the prior art, there are two methods for calculating the
parameter value p at each pixel. Under one approach,
parameter function p(x,y) is directly evaluated for each pixel
of the screen space triangle. To directly evaluate the param
eter function p(x,y) for a given pixel D at x, y requires
two multipliers and two additions. As a result, direct evalu
ation is usually not performed in hardware implementations
of rasterizers, because the hardware required for these
multiplications is prohibitively large and slow. For example,
a common hardware gate array implementation of an adder
requires approximately 10 gates per bit. Thus, an adder
capable of adding two N bit integers would require 10N

10

15

35

45

55

65

2
gates. In other words, the number of gates required by the
adder is directly proportional to the number of bits being
added. Furthermore, the number of gates required to imple
ment a multiplier capable of multiplying two N bit integers
is typically proportional to N. In fact, a common approxi
mation is that a NXN multiplier requires approximately
10N gates.
FIG. 2 presents one prior art hardware implementation of

a direct interpolator. This direct interpolator directly evalu
ates parameter function p(x,y) (i.e., determines the value of
p(x,y) at each pixel of a screen space triangle) in a system
that renders to a 1024x1024 screen. As the screen has 1024
x values and 1024y values, thexandy values in the function
p(x,y) require 10 bits of precision (as 2' equals 1024).
Consequently, as shown in FIG. 2, the gate count for this
direct interpolator is quite large, which renders it prohibi
tively slow and costly. It should be noted that the majority
of the gates in this design are consumed by the two multi
pliers.

Therefore, because of the large number of gates used by
these multipliers, direct evaluation is not typically used for
parameter interpolation. Rather, the evaluation of p(x,y) is
commonly performed by forward differencing methods,
such as the one set forth in "High-Performance Polygon
Rendering." ACM Computer Graphics, Vol. 22, No. 4, pp.
239–246. An advantage of the forward differencing method
is that, for each pixel in a single horizontal span of the
rendered triangle, it requires only a single addition operation
perinterpolated parameter. This advantage has been particu
larly important in hardware implementations of triangle
rasterizers, as addition can be performed quickly and with a
minimum amount of hardware.

Unfortunately, it is difficult to use a forward differencing
implementation in a system in which the screen pixels have
been partitioned between multiple rasterizers. Screen parti
tioning is a known method for increasing rendering perfor
mance by allocating parallel rendering of several regions of
the screen or by enabling caching of regions of the screen.
FIG. 3 sets forth one such triangle that crosses screen
partitions. Assume the task is to rasterize the portion of the
triangle which falls within Partition 2. In this case, because
the triangle crosses the boundary between Partition 1 and
Partition 2, a special means must be added to compute the
values of the interpolated parameters along Edge A, as they
can no longer be computed by forward differencing from the
left edge of the triangle without a (potentially large) perfor
mance penalty to advance to the edge of the partition.
Because forward differencing is usually used for both the x
andy directions, a triangle which also exceeds they bounds
of a partition also needs a second special means to compute
the values of the interpolated parameters along the edge of
the triangle crossing they partition boundary (e.g., along
Edge B of FIG. 3).

Therefore, in a system which renders polygons into a
screen partition, there are advantages to replacing the for
ward differencing method with a method that directly evalu
ates the function p(x,y). If direct evaluation of p(x,y) is used,
then the partition boundary problem shown in FIG.3 has no
effect on the algorithm because the rasterizer merely com
putes the interpolated parameter value based on thex.y value
of the partition pixel being shaded.

However, as mentioned before, the use of prior art direct
interpolators is problematic, because these interpolators are
expensive and slow as they use a large number of gates.
Consequently, there is a need for a faster and cheaper
method and apparatus for directly evaluating a parameter
interpolation function used in rendering images in a graphics

5,701,405
3

system that uses screen partitioning. There is also a specific
need for a direct evaluation method and apparatus for
directly evaluating the parameter interpolation function p(x,
y)=ax-by-c with minimum amount of hardware and with
maximum amount of speed.

SUMMARY OF THE INVENTON

The present invention provides a method and apparatus
for directly evaluating a parameter interpolation function in
a computer graphic system that renders a geometric entity
(such as a polygon) by partitioning a display device into a
number of local regions. The computer graphic system
initially determines that a first set of pixels in a first local
region of the display device is covered by a geometric entity.
One embodiment of the present invention's method then
uses the geometric entity's boundary defining data (e.g., the
geometric entity's vertex coordinates defined relative to a
display device coordinate system) to generate a local set of
coordinates, defined relative to a first local coordinate sys
tem of the first local region, for all pixels of the first set of
pixels. A first local parameter interpolation function, which
represents the parameter values for all pixels of the first set
of pixels when these pixels are defined relative to the first
local coordinate system, is then generated. Finally, the local
parameter interpolation function and the local set of coor
dinates are used to directly calculate the parameter values of
the pixels of the first set of pixels.

BRIEF DESCRIPTION OF THE DRAWNGS

The objects, features, and advantages of the present
invention will be apparent from the following detailed
description, in which:

FIG. 1 presents a diagram of a screen space triangle.
FIG. 2 presents one prior art hardware implementation of

a direct interpolator.
FIG. 3 presents a screen space triangle which crosses

screen partitioning boundaries.
FIG. 4 presents a computer system upon which one

embodiment of the present invention is implemented.
FIG.S presents one embodiment of the rendering archi

tecture of the present invention.
FIG. 6 presents a geometric entity that is displayed on a

display device that is partitioned into four regions.
FIG.7 presents one embodiment of the rendering pipeline

of FIG.S.
FIG. 8 presents one embodiment of the direct local

parameter interpolator of FIG. 6.
FIG. 9 presents another embodiment of the direct local

parameter interpolator of FIG. 6.
FIG. 10 presents another embodiment of the rendering

pipeline of FIG. 5.
FIG. 11 presents one embodiment of the present inven

tion's method for directly evaluating a parameter interpola
tion function used in rendering images in a computer graphic
system that uses screen partitioning.

FIG. 12 presents another embodiment of the present
invention's method for directly evaluating a parameterinter
polation function used in rendering images in a computer
graphic system that uses screen partitioning.

DETALED DESCRIPTION OF THE
NVENTON

The present invention provides a method and apparatus
for directly evaluating a parameter interpolation function

10

15

25

45

SO

55

65

4
used in rendering images in a computer graphics system that
uses screen partitioning. One embodiment of the present
invention provides a method and apparatus for directly
evaluating the parameter interpolation function p(x,y)=ax+
by-c with minimum amount of hardware and with maxi
mum amount of speed. In the following description, numer
ous details are set forth in order to provide a thorough
understanding of the present invention. However, it will be
understood by one of ordinary skill in the art that these
specific details are not required in order to practice the
invention. In other instances, well-known electrical struc
tures and circuits are shown in block diagram form in order
not to obscure the present invention with unnecessary detail.

For purpose of explanation. FIG. 4 presents a computer
system upon which one embodiment of the present invention
is implemented. However, one of ordinary skill in the art
will appreciate that any other type of configuration for a
computer system may be used in conjunction with the
present invention. Computer system 400 includes a bus or
other communication means 405 for communicating infor
mation. A processor 410 couples with bus 405 for processing
digital data. Computer system 400 further includes arandom
access memory (RAM) or some other dynamic storage
device 415 (referred to in FIG. 4 as main memory), which
also couples to bus 405. Main memory 415 stores digital
data and program instructions for execution by processor
410. Main memory 415 also may be used for storing
temporary variables or other intermediate information dur
ing execution by processor 410. Computer system 400 also
includes static storage device 420 (such as a read only
memory (ROM)) coupled to bus 405 for storing static
information and instructions for processor 410. In addition,
mass data storage device 425, such as magnetic disk or an
optical disk and its corresponding disk drive, may also be
included.

Alphanumeric input device 435 (e.g., a keyboard) may
also be coupled to bus 405 for communicating information
and command selections to processor 410. An additional
user input device which may be included in computer
system 400 is cursor controller 440. Input device 440 may
take many different forms such as a mouse, a trackball, a
stylus tablet, a touchpad, etc. Computer system 400 may also
have external hard copy device 445, which may be used for
printing a hard copy on paper.

Computer system 400 further includes a display device
430, such as a cathode ray tube (CRT) or a liquid crystal
display (LCD), for displaying information to a computer
user. Display device 430 couples to bus 405 via frame buffer
450 and display controller 455. Display controller 455
serves as an interface between computer system 400 and
display device 430. Furthermore, frame buffer 450 stores the
pixel data for driving the display device 430. This stored
pixel data is generated by rendering device 460, also known
as a graphics accelerator. As further discussed below, at the
end of the rendering process, rendering device 460 outputs
a high bandwidth pixel stream to frame buffer 450. The
information that rendering device supplies to the frame
buffer typically consists of pixel data of images or scan lines
that are rendered.

For purpose of explanation, a brief general description of
one embodiment of rendering device 460 is provided below
by reference to FIG. 5. As shown in this figure, one
embodiment of rendering 460 utilizes a screen partitioning
rendering scheme which allows performance to be improved
(1) by enabling simultaneous rendering of several different
partitioned regions of the screen, and/or (2) by allowing a
smaller (and therefore faster and cheaper) memory than a

5,701,405
5

system frame buffer to be used for storing each region's
pixels while rendering occurs. More specifically, under this
approach, the rendering process begins when the processor
or a dedicated graphics accelerator 500 transforms, projects,
and clips three-dimensional graphical primitives (defined in
a three-dimensional world coordinate system) from its three
dimensional object database, in order to obtain a collection
of two-dimensional geometric entities (defined in a display
device coordinate system, such as a two-dimensional screen
space coordinate system) that represent the primitives on the
display device.
Common two-dimensional geometric entities are charac

ter strings, points, straight lines, curved lines, and filled
areas (such as polygons, circles, etc.). For instance, graphi
cal primitives are commonly represented by polygon
meshes, which are sets of connected, polygonally bounded
planar surfaces (such as triangles or quadrilaterals). In
addition, for each geometric entity, the computer system
stores corresponding attributes that describe how the par
ticular entity is to be displayed. Common attributes that are
stored by the computer system include color specifications,
line styles, and textstyles. Moreover, in one embodiment of
the present invention, the processor represents a two
dimensional geometric entity by a data structure which
contains the coordinate and attribute information for the
vertices of the geometric entity.

In one embodiment of the invention, the two-dimensional
geometric entity is a triangle which is represented by three
coordinate points, where each of the coordinate points have
one or more parameter values which must be interpolated
across the triangle. The segments which interconnects the
three coordinate points define the bounds of a triangle. In
another embodiment of the present invention, the two
dimensional polygon is a quadrilateral, which is defined
similarly to a triangle except that it will be defined by four
coordinate points (and four corresponding sets of parameter
values). In one embodiment of the present invention, a
quadrilateral may be provided to the rendering device but it
would be converted into a pair of triangles for rendering
(each utilizing three of the four coordinate points).
As further shown in FIG. 5, after processor 500

transforms, projects, calculates vertex parameter values, and
clips three-dimensional graphical primitives to obtain two
dimensional geometric entities, the processor uses known
partitioning schemes (such as those disclosed in "The Pixel
Machine: A Parallel Image Computer." ACM Computer
Graphics, Vol. 23, No 3, p. 69-78) to determine which
partitioned region of the display device the geometric enti
ties intersect. For example, as shown in F.G. 6, if the
computer graphics systems partitions a display screen into
four regions and processor 500 transforms, projects, and
clips a three-dimensional graphical primitive to obtain geo
metric entity 600, the partitioning mechanism of the pro
cessor determines that geometric entity 600 covers a first set
of pixels 605 in the third region and a second set of pixels
610 in the fourth region. After the processor determines
which partitioned regions of the display device the geomet
ric entities intersect, the processor inserts into each region's
geometric entity list data pertaining to the geometric entity
that intersects the particular region. Triangles which cross
more than one partition are added to all affected partition's
geometry lists. These geometric entity lists are then stored in
one or more rendering pipeline list databases. The geometric
entities stored in each rendering pipeline list database are
then rendered by one rendering pipeline. Once all the
geometric entities for all of the three-dimensional graphical
primitives have been processed and placed in their respec

O

15

25

30

35

45

SO

55

65

6
tive partition lists, the rendering pipelines begin processing
those lists to render the partitions. For example, as shown in
FIG. 5, more than one rendering pipeline 510 is used in the
rendering process when more than one rendering pipeline
list database 505 are used to store the region geometric entity
lists. Although it is possible for only a single rendering
pipeline to be used to render the partitions one-by-one, two
or more pipelines can be used to increase performance.

In this manner, the embodiment of rendering device 460
that is set forth in FIG. 5 partitions the two-dimensional
screen space into a number of regions and then renders the
regions by using more than one rendering pipeline. For
purpose of explanation, a description of one embodiment of
a rendering pipeline 510 is provided below by reference to
FIGS. 7 and 10. More detailed explanations of the operation
of some of the modules of rendering pipelines 700 and 1000,
and of some of the additional features that can be incorpo
rated in these rendering pipelines (such as parameter inter
polation shadow plane tests, and alpha blending), can be
found in the United States Patent Applications entitled:
"Computer Graphics System Having High Performance
Multiple Layer Z-Buffer." Ser. No. 08/237,639, filed May 4,
1994 and assigned to Apple Computer, Inc.; "Computer
Graphics System. Having High Performance Multiple Layer
Z-Buffer.” Ser. No. 08/060299, filed May 10, 1993 and
assigned to Apple Computer, Inc.; "Method And Apparatus
For Distributed Interpolation Of Pixel Shading Parameter
Values." Ser. No. 07/812.563, filed Dec. 20, 1991 and
assigned to Apple Computer, Inc.; "Method And Apparatus
For Simultaneously Rendering Multiple Scanlines," Ser. No.
07/811.570, filed Dec. 20, 1991 and assigned to Apple
Computer, Inc.; "A Scanline Rendering Device For Gener
ating Pixel Values For Displaying Three-Dimensional
Graphical Images." Ser. No. 08/359.953, filed Dec. 19, 1994
and assigned to Apple Computer, Inc.; "Method And Appa
ratus For Approximating A Signed Value Between Two
Endpoint Values In A Three-Dimensional Image Rendering
Device,” Ser. No. 08/051473 filed Apr. 22, 1993 and
assigned to Apple Computer, Inc.; and, in U.S. Pat. No.
5.345.541, entitled "Method And Apparatus For Approxi
mating A Value Between Two Endpoint Values In A Three
Dimensional Image Rendering Device," filed Dec. 20, 1991
and assigned to Apple Computer, Inc. Furthermore, it is to
be understood that alternative rendering pipelines can be
employed in conjunction with the teachings of the present
invention.
As shown in FIG.7, the first module of rendering pipeline

700 is a local coordinate generator 705. This local coordi
nate generator (1) obtains the global boundary defining data
(e.g., the vertex coordinates defined relative to the display
device coordinate system) of the geometric entity that inter
sects a region that it renders, and (2) generates the local
positional data (the x and y coordinates defined relative to
the local coordinate system of the region that the pipeline
renders) of the vertices of the geometric entity. For example,
if the parameter interpolation function is p(x,y)=ax-by-c,
then the local coordinate generator generates the local
coordinates for the vertices of the geometric entity by using
the following equations:

x-global coordinate of the left edge of partition;
x'=kocal coordinates for the horizontal componentax-x;
y-global coordinate of the top edge of partition
y=local coordinates for the vertical component=y-y

From these local coordinates for the vertices of the geomet
ric entities, the local coordinate generator also generates the

5,701,405
7

remaining pixels in the rendered region that are covered by
the geometric entity, by using one of the numerous prior art
methods for deriving coordinates for the covered pixels of a
partition from the vertex data (such as the direct evaluation
of the line equations for the triangle edges for each scanline
in the partition). Another example of general polygon scan
conversion methods that use vertex data to determine which
pixels are covered by a geometric entity is described in
"Computer Graphics, Principles and Practice, 2nd Edition.”
Foley, van Dam, Feiner, and Hughes, Addison Wesley, pp.
92-95.

Furthermore, as shown in FIG.7, each rendering pipeline
has a function transformation module 710 for transforming
the global parameter equation (that is defined with respect to
the display device coordinate system), that graphics accel
erator 500 supplies to it into a new local parameter equation
that is defined with respect to the local coordinate system for
the local region that the pipeline renders. For example, if the
global parameter interpolation function is p(x,y)=ax+by+c,
the function transformation module transforms this param
eter equation (that is defined with respect to the display
device coordinate system) into parameter equation p'(x,y)
=ax+by'30 c (that is defined with respect to the rendered
region's local coordinate system) by using the following
equations to change the origin's parameter value from c to
c:

In addition, the rendering pipeline includes local param
eter interpolation module 715 for directly evaluating the
parameter values for every pixel in the rendered region that
are covered by the geometric entity, by using the local
parameter interpolation function and the generated local
coordinates for these pixels. For example, assume that the
global parameter interpolation function is p(x,y)=ax-by-c,
and assume that the screen is partitioned into 16x16 pixel
regions (therefore, a 1024x1024 screen would produce a
total of 4096 partitions). Now, for each partition, the equa
tion p(x,y)=ax--by-c is transformed into the local parameter
interpolation equation p(x,y)=ax+by'+c' for directly inter
polating parameter p by using the covered pixels' generated
local coordinates (x, y). As the partition size is 16x16, x'
andy' are represented by 4 bit values. Consequently, local
parameter interpolator 800 of FIG. 8 can be used to imple
ment interpolation module 715. As evident from FIG. 8,
interpolator 800 requires much fewer gates, and therefore is
much smaller and faster than prior art direct interpolators,
such as the example shown in FIG. 2.

FIG. 8 illustrates one embodiment of the direct local
parameter interpolator. A first multiplier802 receives inputs
a and x'. The first multiplier 802 calculates the product of a
and x' and sends this product to an adder 806. The present
invention also includes a second multiplier804 that receives
as inputs, bandy'. The second multiplier804 calculates the
product of b and y' and sends the product of bandy' to the
adder 806. The Adder 806 receives the product of a and x'
from the first multiplier802 and the product of bandy' from
the second multiplier 804 and calculates the sum of those
two products. A second adder 810 calculates the sum of the
output of the first adder 806 and c'.The output of the second
adder 810 is the value p 812, which is equal to ax+by'c'.

It should be noted that the computation of c' requires full
precision multiplies (e.g., in this example, 10 bitxN bit).

10

15

25

30

35

55

65

8
This may appear to negate the savings of interpolator 800.
However, this isn't the case. For example, assume that each
set of parameter interpolation function constants a, b, c is
used for 25 pixels within a partition (a conservative estimate,
as triangles are typically assumed to be represented by 50
pixels). In that case, p(x,y) will be evaluated 25 times more
often than the computation of c'. This difference in evalua
tion throughput means that the evaluation circuit for c' can
be designed using much more compact and slower methods
(such as using shift-and-add multipliers) than those used in
FIG. 8. Further, because there is typically a large number of
different interpolated parameters (e.g., r, g, b, and Z for
classic Gouraud shading), this means that a single instance
of the evaluation circuit for c' can be shared by a large
number of instances of the circuit shown in FIG. 8, in order
to further amortize the gates used for c' evaluation. In fact,
in a system with multiple rendering pipelines, the c' evalu
ation circuit may even be shared by several complete
pipelines.

In many cases, a further optimization to the interpolator of
FIG. 8 can be performed. Typically, rasterization of a
triangle is performed in y-x order (i.e., they value is set to
a new scan line, and then the x value is varied to sweep out
a span of pixels across that scan line). When this evaluation
pattern is used with local parameter interpolation equation
p'(x'y")=ax'-by'c', there will typically be several evalua
tions in a row in which the y value does not change. For
example, if atypical triangle span is 8 pixels wide, then there
will be eight evaluations of p(x,y) in which y' does not
change. Because y' changes much less frequently than x',
interpolator 900 of FIG. 9 has a single multiplier, which is
used either to evaluate ax' orby'. Furthermore, by computing
and storing a temporary value c"=by'c', the circuit size is
reduced almost 50% with only a slight decrease in perfor
mance (e.g. a 'ya-12.5% slowdown for a typical span width
of 8 pixels).

FIG. 9 illustrates another embodiment of the direct local
parameter interpolator of the present invention. A first mul
tiplexor 901 receives inputs, a and b, and selects either a or
b to output to a multiplier 904. A multiplexor 902 receives
the inputs, xandy', and selects eitherx'ory' to output to the
multiplier 904. A third multiplexor 903 selects between two
of its inputs, c' and c". The output of the third multiplexor
903 is also sent to an adder 906. This embodiment also
includes a register 908 that stores a temporary value, c", and
outputs this value 912 to one of the inputs of the third
multiplexor 903.
The operation of the circuit illustrated in FIG. 9 will now

be described. A select signal, ax'?by'910 is coupled to the
first 901, second 902 and third 903 multiplexors to control
which of the inputs of each multiplexor is selected. When
select signal 910 is high, indicating that by is selected, the
first multiplexor 901 will select b, the second multiplexor
902 will selecty' and the third multiplexor 903 will select c'.
The output of multiplier 904 is the product of bandy. The
sum calculated by adder 906 will be equal to by'+c', which
is stored as temporary value c". The output of adder 906 is
stored to register 908. Select signal 910 also serves to enable
register 908 by asserting a load enable pin 909 of register
908. The value stored in register 908 is c"912. The value,
c", is sent to the third multiplexor 903 for a subsequent
operation.
When select signal 910 is low, indicating that ax' is

selected, the first multiplexor 901 selects a, the second
multiplexor 902 selects x' and the third multiplexor 903
selects c". The output of the multiplier 904 is equal to the
product of a and x'. The output of adder 906 is equal to the

5,701,405

sum of ax' and c". In other words, the output of adder 906
is the parameter value p914, which is equal to ax'+by'+c'. In
this manner, for one value of by', a plurality of ax' values
may be calculated. In other words, where y' does not change,
a number of parameter values for a varying xmay be
calculated.

It will be evident to one skilled in the art that the first,
second, and third multiplexors may be implemented as one
multiplexor since the select control line 910 is common to
the first 901, second 902 and third 903 multiplexors. If the
three multiplexors are implemented as one multiplexor,
upon a high select signal, by" will be sent to the multiplier
904, and c' will be sent to the adder 906. If a low select signal
910 is sent to the multiplexor, multiplier 904 receives a and
x', and c" is selected and sent to adder 906.
As further shown in FIG. 7, after the local parameter

interpolator directly calculates the parameter values for all
of the pixels of the geometric entity that fall into the
rendered region, partition buffer 720 is then used to collect
the final values of the pixels for the partition being pro
cessed. Once all the objects in the partition have been
processed, the contents of the partition buffer is transferred
to the system frame buffer via scan out module 725. In other
words, scan out module is used to transfer to the system
frame buffer the contents of the partition buffer. It should be
noted that for an alternative embodiment of rendering pipe
line 700, the output of local parameterinterpolator 715 is not
supplied to partition buffer 720 but rather is supplied to a
pixel buffer. The parameter values can then later be obtained
from the pixel buffer in order to perform additional calcu
lations with them.

FIG. 10 presents another embodiment of rendering pipe
line 510 of FIG. 5. Rendering pipeline 1000 is identical in
every respect with rendering pipeline 700, except that
instead of having a function transformation module 710 it
has local interpolation function computation module 1010.
As opposed to function transformation 710 which receives
the global parameter function to generate a local parameter
function, local interpolation function computation module
1010 receives the vertex boundary and parameter defining
data of the geometric entity and generates from this data a
local parameter interpolation function, in much the same
way as the prior art generates a global parameter interpola
tion function from the global vertex data of the geometric
entity. For example, if module 1010 receives the global o
coordinates for the geometric entity's vertices and the
parameter values at those vertices, and if the parameter
interpolation function is in the form of p(x,y)=ax'+by'+c',
module 1010 determines the value of constants a, b, and c'
from the vertex coordinate and parameter data.

Module 1010 typically includes a division block that
calculates the slope of the edges, and a state machine that
performs a forward differencing algorithm which iterates
along the edges to define a span. The specific circuit
implementation of this block is known in the art. An
example of a general interpolation function computation
module is discussed in "Computer Graphics Principles and
Practice" 2nd Edition, "Foley, Van Dam, Feiner, and
Hughes, Addison Wesley, pp. 92-95.

FIG. 11 presents one embodiment of the present inven
tion's method for directly calculating parameter values for a
first set of pixels of a display device, which the computer
graphics system partitions into a number of local regions.
The computer graphic system initially determines that the
geometric entity covers the first set of pixels in a first local
region of the display device (i.e., a first set of pixels fall
between the boundaries of the geometric entity in the first

O

15

25

35

45

SO

55

65

10
local region). This embodiment of the present invention's
method then, at step 1105, uses geometric entity's global
boundary defining data (e.g., the geometric entity's vertex
coordinates defined relative to a display device coordinate
system) to generate a local set of coordinates (i.e., coordi
nates defined relative to the coordinate system of the first
local region) for all pixels of the first set of pixels.
At step 1110, a first local parameter interpolation function,

which represents the parameter values for all pixels of the
first portion when these pixels are defined relative to the first
local coordinate system, is then generated. One embodiment
of the method of FIG. 11 generates the first local parameter
interpolation function from a global parameter interpolation
function, which represents the parameter values for all pixels
of the display device that are covered by the geometric
entity, when these pixels are defined relative to the display
device coordinate system. Another embodiment of the
method of FIG. 11, however, transforms the geometric
entity's global boundary defining data to a local boundary
defining data (e.g., transforms the global vertex coordinates
into local vertex coordinates) and then uses the generated
local boundary and parameter defining data to generate the
first local parameter interpolation function. Finally, at step
1115, the local parameter interpolation function and the local
set of coordinates are used to directly calculate the param
eter values of the pixels of the first set of pixels.

FIG. 12 presents another embodiment of the present
invention's method for directly calculating parameter values
for a first set of pixels of a display device, which the
computer graphics system partitions into a number of local
regions. As shown in this figure, at step 1205, a global set of
coordinates (i.e., coordinates defined relative to a display
device coordinate system) for the vertices of the geometric
entity is received. In addition, at this step, the parameter
values for the vertices of the geometric entity are also
received. At step 1210, from the global set of vertex
coordinates, a determination is made that the first set of
pixels of a first local region of the display device are covered
by the geometric entity.

At step 1215, a first local set of coordinates (i.e., coordi
nates defined relative to a first local coordinate system) for
all pixels of the first set of pixels is generated by using the
global set of vertex coordinates. At step 1220, a first local
parameter interpolation function, which represents the
parameter values for all pixels of the first set of pixels when
these pixels are defined relative to the first local coordinate
system, is generate. One embodiment of the method of FIG.
12 generates the first local parameter interpolation function
from a global parameterinterpolation function that represent
the parameter values for all the pixels that the geometric
entity covers on the display device, when these pixels are
defined relative to the display device coordinate system.
Another embodiment of the method of FIG. 12 initially
generates local vertex coordinate and parameter values from
global vertex coordinate and parameter values, and then uses
these generated local vertex coordinate and parameter values
to generate the first local parameter interpolation function.
Finally, at step 1225, the first local parameter interpolation
function and the first local set of coordinates are used to
directly calculate the parameter values for the pixels of the
first set of pixels.
By utilizing the above-described teachings of the present

invention, computer graphic systems can now generate
interpolated parameter values for pixels in a fast and inex
pensive manner. More specifically, for a computer graphics
system which uses screen partitioning, the present invention
greatly reduces the amount of hardware necessary for imple

5,701,405
11

menting direct evaluation of interpolated parameter values.
Due to this reduction in the amount of hardware, the speed
and the cost of the evaluation circuit is also improved. These
advantages stem from creating a new representation of the
function p(x,y) in each screen partition's local coordinate
space, and then changing the structure of the evaluation
circuit to exploit the new coordinate system.
One of ordinary skill in the art would recognize that the

above-described invention may be embodied in other spe
cific forms without departing from the spirit or the essential
characteristics of the disclosure. For example, in an alter
native embodiment of rendering device 460 that is shown in
FIG. 5, screen partitioning modules in the rendering pipe
lines determine whether the geometric entities intersect the
regions that they render, rather than the graphics accelerator
making this determination. Thus, while certain exemplary
embodiments have been described and shown in the accom
panying drawings, the invention is not to be limited by the
foregoing illustrative details but rather is to be defined by the
appended claims.
What is claimed is:
1. A computer graphics system adapted to be coupled to

a display device for displaying pixel data representing
geometric entities comprising:

(a) a screen partitioning circuit for partitioning said dis
play device into a plurality of local regions, determin
ing that a first geometric entity covers a first set of
pixels in a first local region of the display device, and
generating a first geometric entity's boundary defining
data that is defined relative to a display device coordi
nate system;

(b) a first local coordinate generator coupled to said
screen partitioning circuit for receiving said first geo
metric entity's boundary defining data and generating
in response thereto a first local set of coordinates,
defined relative to a first local coordinate system of said
first local region, for all pixels of said first set of pixels;

(c) a first local parameter interpolation function generator
generating a first local parameter interpolation
function, representing parameter values for all pixels of
said first set of pixels when these pixels are defined
relative to said first local coordinate system; and

(d) a first local parameter interpolator coupled to said first
local coordinate generator and said first local parameter
interpolation function generator, said first local param
eter interpolator directly calculating the parameter val
ues for each pixel of said first set of pixels by using said
first local parameterinterpolation function and said first
local set of coordinates.

2.The computer graphics system of claim 1, wherein said
directly calculated parameter values are stored in said buffer.
3.The computer graphics system of claim 1, wherein said

parameter values are pixel shading values, said computer
graphics system using said directly calculated parameter
values to shade said first set of pixels.

4. The computer graphics system of claim 1, wherein said
first local parameter interpolation function generator gener
ates said first local parameter interpolation function from a
global parameter interpolation function representing param
eter values for all pixels of said display device, that said first
geometric entity covers, when these pixels are defined
relative to said display device coordinate system.

5. The computer graphics system of claim 4, wherein said
first local region has a first side defined by horizontal
coordinate x and a second side defined by vertical
coordinate y's said global parameter interpolation func
tion is p(x,y)=ax--by-c and said first local parameter inter
polation function is p'(x,y)=ax'+by'+c', where c-a(xs)
b(yside)-c.

5

10

15

25

30

45

55

60

65

12
6. The computer graphics system of claim 1, wherein said

first local parameter interpolation function generator
includes:

a) circuitry using global boundary and parameter defining
data of said first geometric entity to generate local
boundary and parameter defining data of said first
geometric entity; and

b) circuitry generating the local parameter interpolation
function from the local boundary and parameter defin
ing data of the first geometric primitive.

7. The computer graphics system of claim 6, wherein said
first local parameter interpolation function is p(x,y)=ax'+
by'+c', wherein a and b are computed from said global
boundary and parameter defining data, while c is computed
from said local boundary and parameter defining data.

8. The computer graphics system of claim 5 or claim 7,
wherein said first local parameter interpolator includes:

a) a first multiplier receiving a constant, a, and a hori
zontal coordinate, x', of a first pixel of said first set of
pixels from said first local parameter interpolation
function generator, and a second multiplier receiving a
constant, b, and a vertical coordinate, y, of the first
pixel of said first set of pixels from said first local
parameter interpolation function generator, said first
multiplier multiplying a and x' and the second multi
plier multiplying b and y';

b) a first adder coupled to the first and second multipliers
for receiving the results of the multiplications per
formed by said first and second multiplier and adding
the results; and

c) a second adder coupled to the first adder for adding the
result of the addition performed by said first adder and
receiving c' to produce the parameter value for said first
pixel.

9. The computer graphics system of claim 5 or 7, wherein
said first local parameter interpolator includes:

a) a multiplexor for receiving a, b, a horizontal coordinate
of a first pixel of said first set of pixels and a vertical
coordinate of the first pixel of said first set of pixels, c,
and c", said multiplexor receiving a select control
signal;

b) a multiplier coupled to the multiplexor for receiving at
least one of a first set of values, a and x, and a second
set of values, b and y', and calculating a product,
wherein whether the first set or second set is received
by the multiplier is determined by the select control
signal;

c) an adder coupled to the multiplier for calculating the
sum of the product of the multiplier and at least one of
c' and c"; and

d) a register coupled to the adder and the multiplexor, said
register receiving the select control signal;

wherein the register stores the value of c" when the select
control signal is at a predetermined level; wherein the
register has an output, said output being coupled to an
input of the multiplexor.

10. The computer graphics system of claim 1, wherein
said computer graphics system further determines that said
first geometric entity covers a second set of pixels in a
second local region of said display device, said apparatus
further comprising:

(a) a second local coordinate generator receiving said first
geometric entity's boundary defining data, defined rela
tive to a display device coordinate system, to generate
a second local set of coordinates, defined relative to a

5,701,405
13

second local coordinate system of said second local
region, for all pixels of said second set of pixels;

(b) a second local parameter interpolation function gen
erator generating a second local parameter interpola
tion function representing parameter values for all
pixels of said second set of pixels when these pixels are
defined relative to said second local coordinate system;
and

(c) a second local parameter interpolator coupled to said
second local coordinate generator and said second local
parameterinterpolation function generator, said second
local parameter interpolator directly calculating the
parameter values for each pixel of said second set of
pixels by using said second local parameter interpola
tion function and said second local set of coordinates,

wherein the second local coordinate generator, parameter
function generator and parameter interpolator operate
in parallel and concurrently with the first local coordi
nate generator, parameter function generator and
parameter interpolator.

11. For a computer graphics system having a buffer and a
display device, said buffer for storing pixel data representing
geometric entities, said computer graphics system partition
ing said display device into a plurality of local regions and
determining that a first geometric entity covers a first set of
pixels in a first local region of said display device, a method
of directly calculating parameter value for each pixel of said
first set of pixels, said method comprising the steps of:

(a) using first geometric entity's boundary defining data,
defined relative to a display device coordinate system,
to generate a local set of coordinates, defined relative to
a first local coordinate system of said first local region,
for all pixels of said first set of pixels;

(b) generating a first local parameter interpolation func
tion representing parameter values for all pixels of said
first set of pixels when these pixels are defined relative
to said first local coordinate system; and

5

10

15

35

14
(c) directly calculating the parameter values for each pixel

of said first set of pixels by using said local parameter
interpolation function and said local set of coordinates.

12. The method of claim 11 further comprising the step of
storing said calculated parameter values for said first set of
pixels in said buffer.

13. The method of claim 12, wherein said parameter
values are pixel shading values, said method further com
prising the step of shading said first set of pixels by using
said calculated parameter values for said first set of pixels.

14. The method of claim 11, wherein said local parameter
interpolation function is generated from a global parameter
interpolation function representing parameter values for all
pixels of said display device that said first geometric entity
covers, when these pixels are defined relative to said display
device coordinate system.

15. The method of claim 14, wherein said first local region
has a first side defined by horizontal coordinate x and
a second side defined by vertical coordinate ys, said
global parameter interpolation function is p(x,y)=ax--by-c
and said local parameter interpolation function is p'(x'y')=
axby'tc., where cFa(xse)--b(ysupe)+c.

16. The method of claim 11, wherein the steps for
generating said local parameter interpolation function
include:

a) using global boundary and parameter defining data of
said first geometric entity to generate local boundary
and parameter defining data of said first geometric
entity; and

b) generating the local parameter interpolation function
from the local boundary and parameter defining data of
the first geometric primitive.

17. The method of claim 16, wherein said local parameter
interpolation function is p'(x,y)=ax'+by'c', whereina and b
are computed from said global boundary and parameter
defining data, while c is computed from said local boundary
and parameter defining data.

it is k sk

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. 5,701,405

DATED December 23, 1997
INVENTOR(S) : Kelley et al.

It is certified that error appears in the above-identified patent and that said Letters
Patent is hereby corrected as shown below:

In column 1 at line 30 delete "pixe's" and insert-pixel's-

Signed and Sealed this
Thirty-first Day of March, 1998

Aftest. 6. team
BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

