
USOO58O8627A

United States Patent (19) 11 Patent Number: 5,808,627
Kelley et al. (45) Date of Patent: Sep. 15, 1998

54 METHOD AND APPARATUS FOR 5,278,949 1/1994 Thayer 395/126
INCREASING THE SPEED OF RENDERING 5,287,487 2/1994 Priem et al. . 395/425
OF OBJECTS IN ADISPLAY SYSTEM 5,307.449 4/1994 Kelley et al. 395/119

5,402,147 3/1995 Chen et al. 34.5/115
5,421,028 5/1995 Swanson 395/163 75 Inventors: Michael W. Kelley, San Mateo; Kirk 2 : 1-2

B. Gould, Sunnyvale, both of Calif. 5,457,482 10/1995 Rhoden et al. 395/201
OTHER PUBLICATIONS

73 ASSignee: Apple Computer, Inc., Cupertino,
Calif. J.D. Foley, A. Van Dam, S.K. Feiner, J.F. Hughes, “Second

Edition Computer Graphics Principles And Practice”. 1990,
21 Appl. No.: 232,831 pp. 885,886, 899,900.
21 Appl. No 9 L.Williams, “Pyramdial Parmidal Parametrics”, Computer
22 Filed: Apr. 22, 1994 Graphics, vol. 17, No. 3, Jul. 1983, pp. 1-11.

M.Oka, K. Tsutsui, A.Ohba, Y.Kurauchi, T. Tago, “Real 6 s s s s s

51) Int. Cl. ... G06T 11/00 Time Manipulation of Texture-Mapped Surfaces”, Com
52) U.S. Cl. .. 345/441 puter Graphics, vol. 21, No. 4, Jul. 1987, pp. 181-188.
58 Field of Search 395/141, 118, M.Deering, S. Winner, B.Schedivy, C.Duffy, N.Hunt, “The

395/119, 121-22, 162–166, 133, 501-506, Triangle Processor and Normal Vector Shader: A VLSI
515-518, 522–526, 441; 345/441 System for High Performance Graphics”, Computer Graph

ics, vol. 22, No. 4, Aug. 1988, pp. 21-30.
56) References Cited D.Kirk, D. Voorhies, “The Rendering Architecture of the

U.S. PATENT DOCUMENTS PNYS Somputer Graphics, vol. 24, No. 4, Aug.
, PO.

4,594,673 6/1986 Holly - 364/522 H.Fuchs, J.Poulton, J.Eyles, T.Greer, J.Goldfeather,

4,658,247 4/1987 Gharachorloo ... 340/747 D.Ellsworth, S.Molnar, G.Turk, B.Tebbs, L. Israel. “Pixel
4,697,178 9/1987 Heckel - 340/729 Planes 5: A Heterogeneous Multiprocessor Graphics System

4,815,009 3/1989 Blatin 364/518 Usi P Enh d M ies. C Graph
4,837,447 6/1989 Pierce et al. soo. Using Processor Enhanced Memories, Computer Graph
2Y- 1. 23. No. 3. Ju1 1989 79-88 4.866,637 9/1989 Gonzalez-Lopez et al. ... 364/518 ICS, VOL. Z3, NO. 3, Jul. , PO.

4.885,703 12/1989 Deering 364/522
4,897,803 1/1990 Calarco et al. 364/518 (List continued on next page.)
4,945,500 7/1990 Deering - 364/522 Primary Examiner Almis R. Jankus

5,001,651 3/1991 Rehme et al. 364/518 Attorney, Agent, or Firm Blakely, Sokoloff, Taylor &
5,029,105 7/1991 Coleman et al. 395/515 Zafman
5,115,402 5/1992 Matsushiro et al. ... 395/141
5,123,085 6/1992 Wells et al. 395/121 (57 ABSTRACT
5,128,872 7/1992 Malachowsky et al ... 395/162
5,157.388 10/1992 Kohn 340/800 A method for providing objects to a rendering circuit. The
5,170,468 12/1992 Shah et al. 395/166 method comprises the Steps of generating an active list, the
5,214,753 5/1993 Lee et al. 395/125 active including a first Subset of the objects, accessing the
2. g9. R - - - - - - - - - - - E. first subset of objects from the first memory; storing the first
214 - 2 f ujishima et al. - - - f Subset of objects in a Second memory, the Second memory

5,249.264 9/1993 Matsumoto 395/134 havi f h he fi d
5,253,335 10/1993 Mochizuki et al. ... 395/122 aving a faster access time than the first memory, an
5,261,041 11/1993 Susman 305,152 providing the active list to the rendering circuit.
5,268,995 12/1993 Diefendorff et al. 395/122
5,274,760 12/1993 Schneider 395/162 23 Claims, 9 Drawing Sheets

song
Bus
70

Cache Miss
Request
735

object
Cache
Control

Object Cache
Memory

830 Cache 720

y y Buss
70

Active List
Circuit

730

Object Bus
42

Ex

Scanline
Rendering
Circuit

440

A. Renderec
Scanline Bus

44 i

Buffer
450

w

Displays

BS
S31

5,808,627
Page 2

OTHER PUBLICATIONS Dowdell, Casey et al., “Scalable Graphics Enhancements for
PA-RISC Workstations”, Feb. 24–28, 1992 Spring COMP

K. Akeley, TJermouluk, “High-Performance Polygon Ren- CON 92, Thirty-Seventh IEEE Computer Society Interna
dering, Computer Graphics Vol. 22, No. 4, Aug. 1988, pp. tional Conference, pp. 122–1278,
239-246. Grimes, J., “The Intel i860 64-Bit Processor: A General

Purpose CPU with 3D Graphics Capabilities", IEEE Com
Burgoon, Dave, “Pipelined Graphics Engine Speeds 3-D puter Graphics and Applications, Jul. 9, 1989, No. 4, pp.
Image Control', Electronic Design, No. 17, Jul. 23, 1987, 85-94.
pp. 143-146,148,150. PCT Written Opinion, PCT/US95/04795, Apr. 2, 1996.

U.S. Patent

O9

Sep. 15, 1998 Sheet 1 of 9

A
1 O2

B
1 O3

FIG. 1B

104

105

1 O6

1 O7

O8

109

11 O

1 11

5,808,627

U.S. Patent Sep. 15, 1998 Sheet 2 of 9 5,808,627

Build Object
Activation
Database

2O1

Build Active
Object for

Scanline to be

Rendered

Render Scanline

2O3

Last Scanline
?

Update Active
Object List

2O5

FIG 2
(Prior Art)

U.S. Patent Sep. 15, 1998 Sheet 3 of 9 5,808,627

329

324
Resulting Object

Screen (10 scanlines high) Activation List 327

O O no objects

1 B, C

2 2 no objects

3 3 no objects

4. 4. no objects

5 5 A

6 6 no objects

7 7 no objects

8 8 no objects 328

9 9 no objects

322 32 32O

FIG. 3A
(Prior Art)

U.S. Patent Sep. 15, 1998 Sheet 4 of 9 5,808,627

340
Active

Object s1
Status:

no objects 41
B, C 11 3

B, C

B, C

B, C

B, A

A

A

A

no objects

343 342 345

FIG. 3B
(Prior Art)

U.S. Patent Sep. 15, 1998 Sheet 5 of 9 5,808,627

Memory

Object Access
Controller

42O

Scanline
Rendering

it Circui 440

Rendered
Scanline
BuS
44

Frame Buffer

450

FIG. 4
(Prior Art)

U.S. Patent Sep. 15, 1998 Sheet 6 of 9 5,808,627

- - - - - - - - - - - - - - - -

Main Static Mass Storage
Memo Memo '504 '06 Devices,

U O
Keyboard Bus

522

Cursor
Control

523

Hard Copy
Device

524

Sound Display
Recording and 460

Playback
Device

525

FIG. 5

U.S. Patent Sep. 15, 1998 Sheet 7 of 9 5,808,627

Memory
4 O

Memory
Bus
41 1

Active
List

Controlleg
Object

Cache Memory
Cache 630
BUS

Object 63
BuS
421

Scanline
Rendering
Circuit 440

Rendered
Scanline

Bus
441

Frame Buffer

450

Display 460

FIG. 6

U.S. Patent Sep. 15, 1998 Sheet 8 of 9 5,808,627

BuS

Memory 701

41 O
Scanline
Prefetch reetC 710

Cache Miss
Request Object Cache
735 Memory

630

Active List
Circuit

730

Object Bus
421

Scanline
Rendering

y it Circui 44 O

Rendered
Scanline Bus

441

Frame Buffer
450

Display FIG. 7
460

5,808,627 Sheet 9 of 9 Sep. 15, 1998 U.S. Patent

S Z || 8

au??ueos que sºld JapuÐH

5,808,627
1

METHOD AND APPARATUS FOR
INCREASING THE SPEED OF RENDERING

OF OBJECTS IN ADISPLAY SYSTEM
BACKGROUND OF THE INVENTION

1. Field of Invention
The present invention relates to the field of image display

in a computer System. In particular, the present invention
relates to the field of Scanline rendering of objects to
generate the image.

2. Description of Related Art
AS the processing capability of computer Systems has

grown, the need for more complex and better graphical
representation of images has also grown. Many vocations
use computer System as a fundamental tool. For example, in
the area of architectural design, three dimensional (3D)
graphical images of building, or other Structures, can be
dynamically created and manipulated using computer Sys
tems. The computer System can capture, and process, the
necessary image data much faster than can be done manu
ally. AS computer hardware technology advances, So has the
development of various techniques for rapidly displaying,
and manipulating, these images.
A 3D image is represented in a computer System as a

collection of graphical objects. A computer System displayS
these objects on a display device (for example, a cathode ray
tube (CRT)). All the objects are processed by the computer
System, and Some of them are displayed on the display
device. The reason that only Some of objects are displayed
is that only Some of the them can be seen from a given
Viewpoint. The computer decides which objects can be seen
from a particular viewpoint using each object's depth
parameters. In displaying hundreds, or thousands of objects,
to make a single image, it is clear that the computer System
performs an enormous number of calculations.

Computer graphics Systems typically include a display
control, and a display device. The display control often
includes a frame buffer. The frame buffer is a digital memory
for Storing the image to be displayed as a Series of binary
values. The display device includes a Screen having an array
of picture elements, known as pixels. Each pixel represents
a dot on the Screen, and each pixel can be programmed to a
particular color or intensity. Thousands of individual pixels,
So programmed, are used to represent a displayed image. It
is these individual pixel values which are stored in the frame
buffer. A display controller reads the data from the frame
buffer and converts it into a Video Signal. The Video signal
is fed to the monitor which displays the image.

Images are repeatedly rendered into the display over and
over again, with each new frame representing a new position
or shape of the image to be viewed. Rendered means
creating a pixel representation of Something. The image
must be repeatedly Sent to the monitor in order to maintain
a steady picture on the Screen. Due to characteristics of the
human eye, the monitor needs to be refreshed at a minimum
of 30 times a second. Otherwise, the display will flicker in
a very annoying and distracting manner. In today's computer
graphics Systems, the refresh frequency is typically around
72 hertz (i.e., 72 times a second). A faster refresh rate
produces less flicker. Hence, the duration for displaying an
image is relatively Small, approximately /72 of a Second or
14 milliseconds. Given these constraints, it is imperative to
Speed up the graphics drawing process to avoid sluggish
response times and jerky movements of displayed images.
Moreover, the faster an image can be drawn, the more
information which can be provided to the display. This
results in Smoother, more dynamic, and crisper images.

15

25

35

40

45

50

55

60

65

2
FIG. 1a illustrates an object that can be displayed by a

computer System. Typically, the objects are polygons, and
typically, the polygons are triangles. In this example, tri
angle 101 has three vertices: vertex A102; vertex B 103; and
vertex C 104. For the purposes of illustration, a triangle is
used throughout this description, however, it should be noted
that any object capable of being represented on a computer
display can be used.
One technique for displaying triangle 101 is called Scan

line rendering. A display comprises a number of Scanlines.
Each Scanline is the width of a pixel on the display. Most
computer displays have hundreds of Scanlines and display
hundreds of thousands of pixels. In Scanline rendering, a
computer display image is created one Scanline at a time.
Therefore, for each Scanline, all the objects that have a
portion to be displayed on that Scanline are rendered. These
objects are Said to be active for that Scanline.

FIG. 1b illustrates the triangle of FIG. 1a as it would be
Scanline displayed. Triangle 101 is mapped to the display
Scanlines 105-111. Thus, for each Scanline 105-111, Some
pixels will be displayed that represent triangle 101. Triangle
101 is said to be active for Scanlines 105-111. That is, for
each of those Scanlines, it must be determined if Some
portion of triangle 101 must be displayed. For example, a
rendered Scanline 108 includes pixels 109 representing a
portion of triangle 101.

In this example, Scanline 108 could include portions, or
all, of other objects. Remember that only objects, that are not
blocked by other objects, and are active for a particular
Scanline, will be rendered on that Scanline. Therefore, there
can be many active objects for a Scanline, but only the
objects that can be seen will be rendered for that Scanline.

FIG. 2 is a flowchart illustrating a scanline method for
rendering an image. At Step 201, all the image's objects are
Sorted in order of their activation Scanline. An activation
Scanline is the first Scanline that an object. Scanlines are
typically counted from 0, where 0 is the top scanline of the
display. Thus, in the previous example, triangle 201’s acti
vation Scanline will be scanline 105. The next step 202 is to
build the active object list for the first Scanline to be
rendered. This active object list contains all the objects that
are active for the first Scanline. At step 203, the first Scanline
is rendered.

At step 204, if not all the Scanlines have been rendered,
then at step 205, the active object list is updated for the next
Scanline. That is, the first Scanline's active objects, that are
not active for the Second Scanline, are removed from the list;
the objects not active for the first Scanline, but that are active
for the Second Scanline, are added to the list, and the objects
that are active for both the first and Second Scanlines remain
in the list. After updating the active object list, the next
Scanline is rendered at step 203. Steps 203-205 are repeated
until all the Scanlines for the display have been rendered.

Note, for simplicity throughout this description, each list
can be thought of as comprising a Set of Zero or more
objects. However, in practice, each list may only contain a
reference to zero or more objects. One skilled in the art will
understand when a list contains only references to objects,
and when a list contains the objects themselves.

FIG. 3a illustrates an object activation list as used in Step
201 of the Scanline method of FIG. 2. In this image, triangle
A321, triangle B 322 and triangle C 323 make up an image
to be displayed. Each triangle has an activation Scanline.
Triangle A, determined by Vertex 326, has an activation
Scanline of 5. Triangle B, determined by vertex 324, has an
activation Scanline of 1. Triangle C, determined by Vertex

5,808,627
3

325, has an activation Scanline of 1. From these activation
Scanlines, the object activation list 329 can be generated.
Thus, for the object activation list entry corresponding to
Scanline 0, no objects are listed. For the entry corresponding
to Scanline 1, B 322 and C 323 are listed, shown as entry
327. No objects are listed for entries 2-4. For the entry 328
corresponding to Scanline 5, triangle A 321 is listed. No
objects are listed for entries 6-8.

FIG.3b illustrates the active object list status 340 for each
Scanline rendered from the FIG. 3a example. Note that only
one active object list is kept at any one time. Active object
list 340 merely indicates the state of the active object list for
each Scanline as that Scanline is rendered. At Step 202, the
active object list for Scanline 0 is generated. The active
object list is empty for rendering Scanline 0 because no
objects are active on that Scanline. Thus, at Step 203, no
objects will be rendered for Scanline 0. At step 204, the
computer System determines that more Scanlines need be
generated. At Step 205, the active object list is updated to
include both triangles B 322 and C 323, shown as 341.
Scanline 1 is then rendered using the objects in the active
object list (B322 and C323). Steps 203–205 are repeated for
Scanlines 2-4. Note that the active object list does not
change during these steps as both B322 and C323 are active
for Scanlines 2-4.
At Step 205, in preparation for Scanline 5 generation, the

active object list is different, shown as 342. C 323 is not
active for Scanline 5, and is therefore removed from the list.
However, A 321 becomes active on Scanline 5, and is
therefore added to the list. Scanline 5 is then rendered with
objects B 322 and A321.
At Step 205, in preparation for Scanline 6 generation, the

activation list is changed, shown as 343. B322 is not active
for Scanline 6, and is therefore removed from the list. Note
that A321 is still active, and is therefore left in the active
object list. Not until the preparation of Scanline 9, is A321
removed from the active object list.

Thus, all the objects representing a computer image can
be rendered. This rendering generates an entire computer
display image, one Scanline at a time.

FIG. 4 illustrates one prior art system for rendering
objects on a display. Memory 410 stores the objects used to
make the computer display image. This means that the
objects in the object activation list are Stored in the memory
410. These objects are communicated to an object acceSS
control 420 over memory bus 411. Object access control
420, and rendering circuit 430, perform steps 202-205. The
object acceSS control 420 maintains the active object list as
each Scanline is rendered. The object access control 420 also
passes the objects in the active object list to rendering circuit
430. The object information is passed via the object bus 421.
Rendering circuit 430 generates a Scanline from the objects
in each received active object list. Each generated Scanline
is passed to frame buffer 440 via rendered scanline bus 441.
Display 450 displays the pixels stored in the frame buffer
440 to produce the computer display image.
To reduce the cost of the prior art system, memory 410 is

typically Dynamic Random Access Memory (DRAM). One
problem with this system is that DRAM has a relatively slow
access time. The active list, passed to the rendering circuit,
contains the information for all the objects in that list. For
each Scanline, the object acceSS control 420 must acceSS
memory 410 for each object in the corresponding active
object list. Therefore, the Speed of these accesses to memory
410 are a limiting factor in prior art Systems.

In a typical prior art System, each object, in the active list,
requires approximately 100 bytes of memory. However,

5

15

25

35

40

45

50

55

60

65

4
desirable quality computer graphics display can be achieved
if 10 Mbytes/s of information transfer is sustained between
object control access 420 and rendering circuit 430. This
means that 10 Mbytes/s of active list objects is transferred to
the rendering circuit 430. In this system, a similar informa
tion transfer rate between memory 410 and object access
control 420, need be maintained, or a bottleneck occurs.
That is, if memory 410 cannot supply 10 Mbytes/s to object
access control 420, then the object access control 420 cannot
maintain a Supply of 10Mbytes/S to the rendering circuit.
Therefore, in prior art Systems, either higher cost compo
nents are used in memory 410, DRAM would not likely
Suffice, or the quality of the computer graphics is reduced.
Neither of these solutions are particularly desirable.
Therefore, what is needed is a System that provides low cost,
quality computer graphics display. Further, what is needed is
a Scanline rendering System where the object memory access
time does not act as a bottleneck to the rendering of objects.
Also, what is desired is to be able to Supply a Scanline
rendering circuit a large number of active objects while Still
using relatively low cost, but slow access, DRAM memory
components to Store the objects making up the computer
display image.
An improved apparatus and method for rendering objects

is needed.

SUMMARY OF THE INVENTION

An improved method and apparatus for rendering objects
is described. One embodiment of the present invention
allows objects to be stored in a fast memory to provide
improved System performance while maintaining a low cost
System. An active list of objectS is generated. The list
includes a first Subset of objects that are Stored in a first
memory. The first Subset of objects are accessed and are
stored in a second memory, where the second memory has
a faster access time than the first memory. The list is then
provided to the rendering circuit. Note that because Some of
the objects are Stored in the fast memory, if those objects are
needed again, access to those objects will require much less
time.

In another embodiment, the list includes a Second Subset
of objects. The Second memory includes the Second Subset
of objects. The first subset of objects and the second Subset
of objects are provided to the rendering circuit. Note that the
Second Subset of objects are provided from the faster Second
memory, providing better System performance.

In another embodiment, a Second active list is generated.
Objects included in the first active list, but not in the second
active list are marked as no longer being used. This frees up
Storage in the Second memory, for use by other objects.

In another embodiment, the first active list is generated,
and the first Subset of objects is accessed, while a next
Scanline is being rendered. This allows objects to be Stored
before they are needed. In another embodiment, the active
list is provided while objects are being rendered in a present
Scanline.

In another embodiment, the address of each object is
changed when it is Stored in the Second memory. To deter
mine whether an object is Stored in the Second memory, an
address comparison is performed.
Although a great deal of detail has been included in the

description and figures, the invention is defined by the Scope
of the claims. Only limitations found in those claims apply
to the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not limitation, in the figures. Like references indicate
Similar elements.

5,808,627
S

FIG. 1a illustrates an object that can be displayed on a
computer display.

FIG. 1b illustrates the object of FIG. 1a mapped for
display.

FIG. 2 is a flowchart illustrating a Scanline method for
rendering an image.

FIG. 3a illustrates an object activation list as used in the
Scanline method.

FIG. 3b illustrates the active object list status for each
Scanline rendered from the FIG. 3a example.

FIG. 4 illustrates a prior art system for the Scanline
rendering of objects.

FIG. 5 illustrates a computer system in which the present
invention may be implemented.

FIG. 6 illustrates a system for caching objects to be
rendered.

FIG. 7 illustrates a another embodiment of a system
caching objects to be rendered.

FIG. 8 is a flowchart illustrating a method of caching
objects to be rendered.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Overview

An improved apparatus and method for rendering objects
is described. In the following description, numerous specific
details are Set forth Such activation lists, cache control
methods, etc., in order to provide a thorough understanding
of the present invention. It will be obvious, however, to one
skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known
circuits, structures and techniques have not been shown in
detail in order not to unnecessarily obscure the present
invention.

Computer System Overview
Referring to FIG. 5, the computer system upon which an

embodiment of the present invention can be implemented is
shown as 500. Computer system 500 comprises a bus 501,
or other communications hardware and Software, for com
municating information, and a processor 509 coupled with
bus 501 for processing information. System 500 further
comprises a random access memory (RAM) or other
dynamic storage device 504 (referred to as main memory),
coupled to bus 501 for storing information and instructions
to be executed by processor 509. Main memory 504 also
may be used for Storing temporary variables or other inter
mediate information during execution of instructions by
processor 509. Computer system 500 also comprises a read
only memory (ROM) 506, and/or other static storage device,
coupled to bus 501 for storing static information and instruc
tions for processor 509. Data storage device 507 is coupled
to bus 501 for storing information and instructions. Data
Storage device 507 can be a magnetic disk or optical disk,
and its corresponding disk drive, or any other Storage
medium. Memory 410, of FIG. 4, could include any, or all,
of these types of memory/data Storage devices. However,
typically, memory 410 only includes the main memory 504.

Computer system 500 can also be coupled via bus 501 to
display control 510. Display control 510 generates the
necessary Signal for display device 460 to display informa
tion to a computer user. Display control 510 can include a
frame buffer, and Specialized graphics rendering devices.
Display 460 can include a cathode ray tube (CRT), and/or a
flat panel display, or any other display device.

15

25

35

40

45

50

55

60

65

6
An alphanumeric input device 522, including alphanu

meric and other keys, is typically coupled to bus 501 for
communicating information and command Selections to
processor 509. Another type of user input device is cursor
control 523, Such as a mouse, a trackball, a pen, a touch
Screen, or cursor direction keys for communicating direction
information and command selections to processor 509, and
for controlling cursor movement on display 460. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., x) and a second axis (e.g., y), which allows
the device to Specify positions in a plane. However, this
invention should not be limited to input devices with only
two degrees of freedom.

Another device which may be coupled to bus 501 is a hard
copy device 524 which may be used for printing
instructions, data, or other information on a medium Such as
paper, film, or Similar types of media. Additionally, com
puter system 500 can be coupled to a device for sound
recording, and/or playback 525, Such as an audio digitizer
coupled to a microphone for recording information. Further,
the device may include a speaker which is coupled to a
digital to analog (D/A) converter for playing back the
digitized sounds. Finally, computer system 500 can be a
terminal in a computer network (e.g., a LAN).

A System for Caching Objects to be Rendered
AS noted previously, what is needed is a System that

provides low cost, quality computer graphics display. The
present invention provides one Solution to this problem. One
embodiment allows a rendering circuit to render the objects
in the active object list, without having Significant impact
from a slow object memory. It has been discovered that with
little additional cost, the negative impact on performance of
a DRAM's slow access time can be overcome.

FIG. 6 illustrates a general overview of one embodiment
of the present invention. Memory 410 is coupled to active
list controller 620. Object cache memory 630 is also coupled
to the active list controller 620 via cache bus 631. The active
list controller 620 provides the objects in an active list to the
Scanline rendering circuit 440, via object bus 421. It has
been discovered that caching objects in the active list
reduces the negative effects of Slow access to memory 410.
That is, by temporarily Storing the objects, of the active
objects list, in a much faster memory, a much higher
communication rate of objects to the Scanline rendering
circuit can be Sustained.
AS mentioned previously, memory 410 can include any of

a number of Storage devices/media, all being able to Store
mass amounts of information at a relatively low cost. This
means that hundreds, or thousands, of objects can be Stored
in memory 410. Further, memory 410 can store application
programs for manipulating the objects, and for performing
other System operations.
The following illustrates the operation of active list con

troller 620 and object cache 630. Assume that the objects of
FIG.3b are to be cached. To render Scanline 0, the active list
controller 620 need not provide any objects to Scanline
rendering circuit 440. Scanline rendering circuit 440 will
produce Scanline 0, with no portions of any objects
represented, and pass this to frame buffer 450.

Next, Scanline 1 is processed. The active list controller
620 adds objects B 322 and C 323 to it’s active object list.
AS these objects are not cached in object cache memory 630,
these objects are then requested from memory 410. When
memory 410 provides objects B 322 and C 323, active list
controller 620 provides B 322 and C 323 to the Scanline

5,808,627
7

rendering circuit 440. Note that until this point, this embodi
ment operates similarly to the prior art of FIG. 4. However
the present embodiment now differs in that the active list
controller 620 also stores B 322 and C 323 in object cache
memory 630. The advantage of this will be seen in the
rendering of the next Scanline.

Scanline 2 is then processed. The active list controller 620
does not change the active object list because both B322 and
C 323 remain active for this Scanline. The active list
controller 620 then checks to determine whether the objects
in the active object list have been cached. In this case, object
cache memory 630 has B322 and C 323 stored. The active
list controller 620 retrieves B 322 and C 323 from object
cache memory 630. Remember that object cache memory
630 is relatively small, but much faster than memory 410.
Thus, for Scanline 2, the active list controller 620 can
provide B 322 and C 323 to Scanline rendering circuit 440
in much less time than was required for Scanline 1. For
Scanlines 3 and 4, the same steps are followed and B 322 and
C 323 are provided in the much shorter time.

Scanline 5 is then processed. The active list controller 620
updates the active object list to that shown at 342. Active list
controller 620 requests A 321 from memory 410. While
memory 410 is processing the request, active list controller
620 can request B322 and C 323 from object cache memory
630. In one embodiment of the present invention, B322 and
C 323 can be provided to Scanline rendering circuit 440
while memory 410 is processing the request for A321. In
another embodiment of the present invention, active list
controller 620 communicates the objects in the active object
list in the same order as the objects appear in the list. In any
case, the objects of active object list, at Stage 342, can be
provided to the scanline rendering circuit 440 in less time
than the prior art system of FIG. 4. This is because only one
object need be requested from slow memory 410. As with
objects B 322 and C 323, the first time they are received
from memory 410, they are stored in object cache memory
630.

Scanline 6 is then processed. Active list controller 620
updates the active list to the state shown at 343. The active
list controller 620 determines that object cache memory 630
contains A321, and accesses object cache memory 630.
Again, because object cache memory 630 is accessed, rather
than memory 410, active list controller 620 can communi
cate A321 to Scanline rendering circuit 440 in less time than
is required by the prior art System. The remaining Scanlines
can then be rendered without having to access memory 410.

Note that when object cache memory 630 is full, any of
a number of well known cache invalidation techniques can
be used. These cache invalidation techniques free Storage in
the cache for use by other data. For example, the least
recently used object in the cache can be replaced by an
object received from memory 401, or a random object in
object cache memory 630 can be replaced by an incoming
object. However, as is discussed later, it has been discovered
that a particular cache replacement System provides signifi
cant cache hit improvements. A cache hit occurs when a
revised object is Stored in the cache. This improved cache hit
rate improves the performance of the System.

Thus, the FIG. 6 System can provide improved graphics
display performance by reducing the number of accesses to
memory 410 and thereby increase the number of objects that
the System is capable of rendering. In one embodiment of the
present invention, it has been discovered that using rela
tively Small, fast memory components, in object cache
memory 630, greatly improves the performance of the
graphics display System.

15

25

35

40

45

50

55

60

65

8
In one embodiment of the present invention, memory 410

includes 16 Mbit, 80 ns DRAM. Object cache memory 630
is comprised of synchronous 32 Kbitx36, 12 ns SRAM
(Micron MT58LC32K26M1). The active list controller 620
includes Special circuitry for controlling the caching of
objects in the active object list to object cache memory 630.
By caching the active object list, active list controller 620
can quickly access the objects most likely to be required by
the Scanline rendering circuit 440.
AS is described further in this document, other inventive

aspects of the implementation of the active list controller
620 and object cache memory 630, further increase the
performance of the present embodiment.

FIG. 7 illustrates a view of another embodiment of the
present invention. This embodiment prefetches objects one
Scanline before they are needed. This reduces the chance of
an interruption of the rendering process, when an object is
first accessed. This embodiment has further performance
improvements over an embodiment that merely caches the
active object list objects. For example, if Scanline rendering
circuit 440 is rendering Scanline 4, then Scanline prefetch
710 requests objects in Scanline 5. This process is described
in greater detail in relation to FIG.8. By prefetching objects
before they are needed, more objects can be rendered per
Scanline, improving the image displayed on display 460.

In this embodiment, the active list controller 620 has been
replaced by a Scanline prefetch 710, an object cache control
720, and an active list circuit 730. The scanline prefetch 710
is coupled to memory 410 via bus 701. The object cache
control 720 is coupled to the Scanline prefetch 710 via bus
701. The object cache control 720 is also coupled to object
cache memory 630 via cache bus 631. Active list circuit 730
couples to the object cache control 720 via bus 701.

Scanline prefetch 710 maintains an active object list for
the next scanline to be rendered. Scanline prefetch 710 also
requests, via bus 701, objects contained in the active object
list for the next Scanline to be rendered.

Object cache control 720 is for controlling access to
object cache memory 630. Object cache control 720 is also
for storing an object received over bus 701 from memory
410 into object cache memory 630. Of course, object cache
control 720 will only store a received object if there is room
in object cache memory 630.

Active list circuit 730 is for maintaining the active object
list for the present Scanline. The active list circuit 730
provides the objects in the active list to Scanline rendering
circuit 440, for rendering of the present Scanline. Active list
circuit 730 requests the objects in the present active object
list from object cache control 720. If an object is not stored
in object cache memory 630, then active list circuit 730
requests the object from memory 410 via cache miss request
735. An object may not be in cache memory because, there
are too many objects in the present Scanline for them all to
be stored in object cache memory, or because memory 410
could not provide all the prefetched objects in time.

In this System, each object is referenced by a particular
address. In one embodiment of the present invention, tradi
tional tags are used to reference cached data. Typically,
cached data is associated with one or more tags. This allows
easy indexing of data. However, it has been discovered that
improved performance can be gained by not providing
additional tags to reference objects Stored in object cache
memory 630. Thus, in another embodiment, no additional
tags are needed in object cache memory 630. This allows
more objects to be stored in object cache memory 630. A
reference to an object, Stored in object cache memory 630,

5,808,627
9

is maintained by changing the address of that object as it is
stored in object cache memory 630. The address of the
object is changed Such that each cached object will have an
address not found in memory 410. This makes the test to
determine whether a particular object is in the cache (called
a cache hit test) a simple address comparison. Thus, to test
if an object in the present Scanline's active object list, active
list circuit 730 need only test if that object's address is
within a certain range.

A Method of Caching Objects to be Rendered
FIG. 8 illustrates further advantages of the present inven

tion. FIG. 8 illustrates a method of caching objects to be
rendered. This method can be used in the embodiment of
FIG. 7. As is discussed below, this method has the following
advantages:

objects are moved from the Slow memory to fast cache
memory one Scanline before they are required by the
rendering circuits, this decouples the longer access time
of Slow memory from the rendering task,

a cached object is kept in the cache until all rendering
references to have completed, thus, any modifications
made to the object during the rendering procedure are
made while the object is in the fast cache memory,
rather than the slow memory, and

objects are retained in the cache for exactly as long as they
are active, therefore, the cache invalidation method
provides more efficient cache use than other heuristics.

Like the prior art method, at Step 202, the object activation
list is generated for the image. However, the remaining Steps
differ considerably from the prior art, and provide the
previously mentioned advantages. Steps 801-804 prefetch
the objects in the next Scanline's active object list. Steps
810-813 access the cache memory 630 to provide the
Scanline rendering circuit 440 the objects in the present
Scanline's active object list. Steps 820–821 mark objects in
object cache memory 630 as being no longer needed,
thereby freeing cache Storage for other objects. Typically,
the marked objects are not written back to memory 410. The
marked objects are simply overwitten with new object
information. This is because, once rendered, objects are
usually discarded. The above groups of StepS can run in
parallel. One skilled in the art would understand how these
StepS can be run in parallel; therefore, to Simplify the
description of this embodiment, Some details of the parallel
operation have not been included.

Similarly, Some detail regarding initialization and final
completion steps of the method have not been included. One
skilled in the art would understand how to implement these
Steps, given the description herein.

Beginning with the prefetching Steps, Step 801 generates
the active object list for the next Scan. For example, if
Scanline 4 were being rendered by Scanline rendering circuit
440, at step 801, the active object list for Scanline 5 would
be generated. Next, at step 802, the objects in the next active
object list, but not already in object cache memory 630, are
requested. In one embodiment, Scanline prefetch 710 per
forms steps 801 and 802. While performing step 802,
Scanline prefetch 710 determines whether each object in the
next Scanline's active object list is already Stored in object
memory cache 630 (in one embodiment, this test is done
using a simple address comparison). For example, if
prefetch circuit 710 is prefetching objects for Scanline 5,
then only object A 321 would be requested from memory
410, as objects B 322 and C 323 would already have been
cached.

15

25

35

40

45

50

55

60

65

10
At step 803, objects received from memory 410 are stored

in object cache memory 630. As mentioned previously, in
one embodiment, object cache control 720 stores all objects,
received from memory 410, in object cache memory 630. Of
course, the object cache control 720 only stores these
received objects if there is room in object cache memory
630.
At step 804, the present Scanline's active object list is set

to the next scanline's active object list. This allows the next
Scanline to be rendered. For example, if the next active
object list for Scanline 5 has been prefetched, in Steps
801-804, then the present active object list for Scanline 4 has
been rendered, in steps 810-813. Thus, the steps 810-813
can be performed for Scanline 5.
While the prefetching Steps are being performed, the

present Scanline is being rendered. At Step 810, the present
Scanline's active object list is accessed. Next, Step 811, all
the objects in the present active object list are requested and
then provided to the rendering device. In one embodiment,
active list circuit 730 determines whether an object in the
present Scanline's active object list is in object cache
memory 630. If the object is in the cache, then that object is
accessed and provided to Scanline rendering circuit 440.
Note that because the prefetching Steps had already
prefetched the objects for the present Scanline, only rarely
will some of the objects not be in the cache. This allows the
rendering of the present Scanline to proceed without having
to wait for slow memory 410 accesses. At step 812, the
present Scanline is rendered. Note that Some of the present
Scanline can be rendered, Step 812, while objects are being
accessed, and provided, in Step 811.
Another advantage of the present invention is illustrated

where step 812 involves modifying an object. During
rendering, an object may be modified, for example, to
change it's associated linked list information. If the object
were in Slow memory, not only would the Scanline rendering
have to wait for an initial read from the memory, but any
modifications to an object would require waiting for a write
to the slow memory. In one embodiment, modifications to an
object can be done by writing to the fast cache memory.
At step 813, the previous scanline's active object list is set

to equal the present Scanline's active object list. This allows
objects no longer needed, to be marked as being no longer
needed, thereby freeing up space in the cache memory.
At step 820, the previous Scanline's active object list is

accessed. Next, all the objects not needed to render future
Scanlines, are marked as being no longer needed. It has been
discovered that these cache invalidation Steps are more
efficient than other cache invalidation Schemes. Objects are
retained in the cache for exactly as long as they are needed.
For example, if the previous Scanline is 5, i.e. Scanline 6 is
presently being rendered, then B 322 will be have been
completely render. Therefore, B 322 will no longer be
needed, and the room in the cache can be freed for other
objects.

Another advantage of the use of steps 820–821 occurs
when the present Scanline incurs a cache miss. In the rare
circumstances of a cache miss, Slow memory must be
accessed to obtain the required object. However, because
Slow memory is being accessed, Some objects may be
marked as no longer needed, in Step 821. Therefore, when
Slow memory returns the needed object, there may be room
in the cache to Store that object.

Thus, it has been shown that steps 801-804, 810-813, and
820–821, can efficiently render objects in a system having
relatively slow memory. Further, a number of discoveries
have lead to performance improvements in the Scanline
rendering of graphical images.

5,808,627
11

An improved apparatus and method for rendering objects
has been described.
What is claimed is:
1. A method for providing objects to be rendered to a

rendering circuit for Subsequent display on a display device,
Said method comprising the Steps of:

a) generating an active list of objects to be displayed, said
active list including a first Subset of Said objects,

b) configuring a first memory to Store said first Subset and
a Second memory to Selectively Store Said first Subset,
Said Second memory having a faster access time than
Said first memory;

c) determining if said first Subset is stored in Said Second
memory;

d) if Said first Subset is not stored in Said Second memory,
then
accessing Said first Subset from Said first memory and

Storing Said first Subset in Said Second memory;
e) if said first Subset is stored in said Second memory, then

accessing Said first Subset from Said Second memory;
and

f) inputting said active list that includes said accessed first
Subset to Said rendering circuit.

2. The method of claim 1 wherein Said steps of generating
Said active list, determining if Said first Subset is Stored in
Said Second memory accessing Said first Subset of objects,
and Storing Said first Subset of objects, occur while Said
rendering circuit is rendering objects of a next Scan line.

3. The method of claim 2 wherein said step of inputting
Said active list occurs while Said rendering circuit is render
ing objects of a present Scanline.

4. The method of claim 1 wherein said objects include
triangles.

5. The method of claim 1 wherein said first memory
includes dynamic random access memory (DRAM).

6. The method of claim 1 wherein said second memory
includes Static random access memory (SRAM).

7. A method for providing objects to be rendered to a
rendering circuit for Subsequent display on a display device,
Said method comprising the Steps of:

a) generating an active list of objects to be displayed, said
active list including a first Subset of Said objects and a
Second Subset of objects,

b) configuring a first memory to Store said first Subset and
a Second memory to Selectively Store Said first Subset,
Said Second memory having a faster access time than
Said first memory, Said Second memory further config
ured to Store Said Second Subset;

c) determining if said first Subset is stored in Said Second
memory;

d) if Said first Subset is not stored in Said Second memory,
then
accessing Said first Subset from Said first memory and

Storing Said first Subset in Said Second memory and
accessing Second Subset from Said Second memory;

e) if said first Subset is stored in said Second memory, then
accessing Said first Subset and Second Subset from Said
Second memory; and

f) inputting said active list to said rendering circuit,
wherein Said Step of inputting Said active list to Said
rendering circuit includes inputting Said first Subset of
objects and Said Second Subset of objects.

8. A method for providing objects to be rendered to a
rendering circuit for Subsequent display on a display device,
Said method comprising the Steps of:

1O

15

25

35

40

45

50

55

60

65

12
a) generating a first active list of objects to be displayed,

Said first active list including a first Subset of Said
objects,

b) configuring a first memory to Store said first Subset and
a Second memory to Selectively Store Said first Subset,
Said Second memory having a faster access time than
Said first memory;

c) determining if said first Subset is stored in said Second
memory;

d) if Said first Subset is not stored in said Second memory,
then
accessing Said first Subset from Said first memory and

Storing Said first Subset in Said Second memory;
e) if Said first Subset is stored in said Second memory, then

accessing Said first Subset from Said Second memory;
f) inputting Said first active list to said rendering circuit;
g) generating a Second active list;
h) generating a set of no longer used objects including all

objects included in Said first active list, but not included
in Said Second active list; and

i) marking each of Said set of no longer used objects
Stored in Said Second memory.

9. A method of providing a present active list set of objects
to be displayed to a rendering circuit in a computer System
for Subsequent display on a display device, Said computer
System for displaying a plurality of Scanlines, Said method
comprising the Steps of:

a) generating a next active list, Said next active list
including objects to be rendered in a next Scanline;

b) generating a next active list Subset of objects including
objects in Said next active list that are not stored in a
fast memory;

c) accessing said next active list Subset of objects from a
slow memory;

d) Storing said next active list Subset of objects in Said fast
memory;

e) accessing said present active list set of objects, said
present active list Set of objects including objects to be
rendered in a present Scanline;

f) inputting said present active list set of objects to said
rendering circuit;

g) generating a no longer needed list of objects, said no
longer needed list of objects including objects not
needed in Said present or next Scanlines, and

h) marking each object in said no longer needed list of
objects in Said fast memory as being no longer needed.

10. The method of claim 9 wherein each of said objects
includes an address, and Said Storing Step includes modify
ing the address of each object being Stored.

11. The method of claim 10 wherein said generating said
next active list Subset includes the Step of testing the address
of each object to determine whether each object Stored in
Said fast memory.

12. The method of claim 11 wherein said step of accessing
Said present active list Set of objects includes performing the
following Steps for each object:

performing the following Steps, if Said object is not Stored
in Said fast memory,
requesting Said object from a slow memory,
providing Said object from Said Slow memory, and
Storing Said object in Said fast memory if Said fast
memory can Store Said object, and

performing the following Steps, if Said object is Stored in
a fast memory, providing Said object from Said fast
memory.

5,808,627
13

13. A System for displaying objects on a display device,
Said System comprising:

a) a first memory for Storing a first set of Said objects;
b) a Second memory for storing a second set of Said

objects, Said Second memory having a faster acceSS
time than Said first memory;

c) a first circuit for accessing a first active list of objects
to be displayed, said first active list including an object
from Said Second Set of objects,

d) a memory access circuit, being coupled to said first
memory, Said Second memory, and Said first circuit, for
accessing Said first memory and Said Second memory
responsive to Said first active list, and

e) a rendering circuit being coupled to said memory
access circuit for rendering Said objects included in Said
first active list for Subsequent display on the display
device.

14. The system of claim 13 wherein said first active list
includes an active Set of objects.

15. The system of claim 14 wherein said memory access
circuit includes:

a Second circuit, being coupled to Said first memory and
Said Second memory, for generating Said first active list
prior to Said first circuit accessing Said first active list,
Said first active list including a third Set of objects, Said
Second circuit further for requesting each object in Said
third Set of objects, not included in Said Second Set of
objects, from Said first memory.

16. The system of claim 15 wherein said memory access
circuit includes:

a third circuit, being coupled to Said Second memory and
Said Second circuit, for storing each object from Said
first memory in Said Second memory, if Said Second
memory has available Storage.

17. The system of claim 13 wherein said memory access
circuit includes:

a marking circuit for accessing Said first active list after
Said rendering circuit renderS Said objects included in
Said first active list, Said first active list including a first
Subset of objects, Said first Subset of objects being
completely rendered, said first marking list for marking
Said first Subset of objects Stored in Said Second
memory.

5

15

25

35

40

14
18. A circuit for displaying objects on a display device,

Said circuit comprising:
a) a slow memory configured to Store a first object;
b) a fast memory configured to store a second object;
c) a prefetch circuit, configured to couple to Said slow
memory and to generate a next active list of objects to
be displayed, said prefetch circuit further being con
figured to prefetch objects included in Said next active
list that are not stored in Said fast memory;

d) a fast memory control circuit, configured to couple to
Said prefetch circuit and Said fast memory and to
control Said fast memory;

e) an active list circuit, configured to couple to said fast
memory control circuit and to access objects included
in a present Scanline;

f) a Scanline rendering circuit, configured to couple to said
active list circuit, and to render Said accessed objects
provided by Said active list circuit; and

g) a frame buffer, configured to couple to said Scanline
rendering circuit and Said display, Said frame buffer
configured to provide Video information, correspond
ing to Said rendered objects, to Said display.

19. The circuit of claim 18 wherein said active list circuit
is further for requesting present active list objects, not Stored
in Said fast memory, from Said Slow memory, and Said fast
memory control circuit is further configured to Store objects
from Said Slow memory in Said fast memory, if Said fast
memory has available Storage locations.

20. The circuit of claim 19 wherein each object includes
an address, and wherein Said fast memory control circuit
modifies each object's address before Storing each object in
Said fast memory.

21. The circuit of claim 20 wherein said active list circuit
also includes a previous active list, Said active list circuit is
for generating a Subset of objects included in Said previous
active list, but not included in Said present active list, and
Said active list circuit is for marking Said Subset of objects
in Said fast memory.

22. The circuit of claim 21 wherein said fast memory
includes a SRAM.

23. The circuit of claim 22 wherein said slow memory
includes a DRAM.

