
Computer Graphics, 26, 2, July 1992

X

.//$

A Scalable Hardware Render Accelerator using

Michsel Kelley Stephanie Winner

1. ABSTRACT

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

A hardware accelerator for 3D ren&ring, based on a mcdifkd
scanline algorithm, is presented. The accelerator renders
multiple scanlines in parallel with high efficiency, and is
optimized for integration into systems that suppr[high speed
data streams (such as video). The architecture has a very high
performance/cost ratio, but maintains a low entry cost and a
high degree of scalability — key issues for incorporation in
personal computers. The performance of both the general
algorithm and the prototype implementation is analyzed.

CR Categories and SubJect Descriptors: B.2.1
[Arithmetic and Logic Structures]: Design Styles - parallel;
1.3.1 [Computer Graphics]: Hardware Architecture - raster
display devices; 1.3.3 [Computer Graphics]: Picture/Image
Generation - display algorithms; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - visible surface
algorithms

General Terms: algorithms, architecture, parallel

Additional Key Words and Phrases: scanline, data
sharing, low bandwidth, low cost

2. INTRODUCTION

Advances in CPU technology have given personal computers
the compute power necessary to run 3D applications. However,
interactive applications require faster rendering than can be
achieved by the CPU alone — today’s 3D workstations also
inclu& sophisticated rendering hardware [1, 2, 11, 14]. The
goal of our project is to provide similar functionality in a
personal computer.

We began by determining what differences, if arty, there were
between the requirements of 3D acceleration in a workstation
and a personal computer. We identified some key features
required for a personal computer

● Low cost. The accelerator must have a very low entry cost.

. Modularity. Itshould be possible to add the accelerator to a
system as an option.

Permission to copy without fee all or pan of this material is granted
provided that [he cop!es tire not made or distributed for direct
cnmmewiid advantage. [hc ACM copyrightno!icemd the title of the
puhlication and its date trppmr, and nntice is given that cnpying is by
permission of the Assneitilion for Computing Machinery To copy
otherwise. nr 10 republiih, requires a fee and/or specific permissmn.

a Modified Scanline Algorithm

Kirk Gould

● HiEh performance. An intuitive, direct manipulation user
in~f~e-requires a high frame rate and high ~peed hit
testing.

● Visual realism. Although schematic representations such as
wireframe are useful, naive users are more comfortable with
“realistic” shaded images with shadows.

Existing workstations meet some of these recpirements, but
not all. High end workstations deliver high performance shaded
rendering, but prices are stratospheric by personal computer
standards. Recent entry level workstations have redtced this
cos~ but at the expense of lower speed, particularly for high
quality rendering modes. And even these systems are many
times the entry price of a typical personal computer. Finally,
because the graphics accelerator in these systems is tightly
coupled to the system frame buffer, providing the accelerator as
an option, e.g. a plug-in card, is difficult — typically a local
frame buffer must be added to the accelerator, increasing cost.

The architecture described in tlis paper has been optimized for
a personal computer graphics system. It uses a modified
scardine rendering algorithm to greatly reduce cost by
combining the rasterization hardware and scanlie RAM on
chip. The architecture emphasizes shaded rendering, and new
rendering features (e.g. CSG, sntialissing) can be added with
little cost increase. The design is highly scalable because
performance and functionality are limited by ASIC complexity
(which is rapidly increasing), and because the architecture
efficiently supports parallelism — a parallel implementation is
described which can rasterize 880K triangles per second.

This paper primarily discusses rasterization, as standard
techniques are used for transformation, clipping and shading
[e.g. 4, 6]. We plan to use general purpose RISC or DSP devices
to accelerate these tasks [2, 11].

3. BACKGROUND AND PREVIOUS
WORK

3.1 Screen Z-Buffer Algorithm

The screen Z-buffer algorithm was one of the fust shaded hidden
surface removal algorithms, and was used by both software and
hardware implementations [3, 8]. Its advantage is simplicity —
each object to be rendered can be transformed and rasterized
independently, allowing an arbitrarily large number of objects
to be rendered (given enough patience). Hardware
implementations of this algorithm have been very successful;
in fac~ it is the method used in virtually all 3D workstations
[1, 2, 11].

AcM-()-89791-479 -l/92/() 07/()24i $() I .50 241

http://crossmark.crossref.org/dialog/?doi=10.1145%2F133994.134069&domain=pdf&date_stamp=1992-07-01

SIGGRAPH ’92 Chicaao, Julv 26-31, 1992

However, the screen Z-buffer algorithm has disadvantages
which make it less suitable for personalcomputers.The most
obvious of these is memory use — the algorithm requires .
storing a Z value for every pixel on the screen. Storing a 24 bit
Z for a lKxIK screen uses 3M bytes of memory, an appreciable
amount in an entry level computer. More importantly, this
memory must be very high performance — pixel shading speed
is directly proportional to the sustained bandwidth to the RAM.
For example, rendering one million 100 pixel triangles/second
requiresl:

lM tri/s x 100 pixel/tri = 100M pixelh
100M pixel/s x 3 Z bytes/pixel x 1.5 = 450 MB/s

In practice, these very high bandwidths are achieved with wide,
fast RAM [1], often coupled with sophisticated caching and
prefetchirtg. Although it’s reasonable to add these costs to a
dedicated workstation they make it impractical to add high
performance graphics to a low cost personal computer.

More abstractly, these disadvantages of the screen Z-buffer
algorithm are caused because it stores the state of the rendering
calculation for each pixel individually, effectively, the state
information necessary to render one pixel is replicated for
every pixel on the screen. As a resul~ rendering algorithms
which require additional information per pixel (e.g. CSG,
shadows, antialiasing) are expensive to implemen~ for
example, the system described in [10] has over 150 bits per
pixel.

3.2 Scanline Z-buffer algorithm

To fmd a more cost effective implementation of these rendering
algorithms, we adopted the same solution used by many
software renderers, the scardine Z-buffer algorithm [12]. In
comparison to the screen Z-buffer algorithm, where the state
information necesssry for rendering a pixel is stored for every
pixel on the screen, the scanline algorithm presorts the object
database in screest space [15], and renders each scardirte
individually — only one scanline of pixel state information is
kept. The difference between the two methods is substantial:
for a lKxIK screen, the screen Z-buffer algorithm uses 3M
bytes for Z, whereas the sardine algorithm uses only 3K bytes
[9].

Additional information on scardine algorithms can be found in
[6].

4. OVERVIEW OF THE PROTOTYPE
P

tit CPU

(trlmdom, Scsm W

Shade,
RadedZw

tdwl Wtl)

z. Shdcwue40x40bils
SRGS

e40x40bils

Figwre 1

The prototype (shown above) is based on a Macintosh@
Quadram personal compute~ the scardine resterizer is
implemented as a Processor Dwect expansion card. The host

1 This assumes 50% of pixeis ars visiblq section 8.4 discusses this in

more detail.

68040 is used for trsnsformati~ shading, and active list
maintertan=, faster prototypes, using more pwerful floating
point engines, are also being developed.

The scardiie rasterizer performs Gcmraud shading, hidden
surke removal via a 32 bit Z-buffer, shadow volumes [71 and
alpha blending (with 10 bits of accuracy). The rasterizer is
implemented as two 0.8pm ICS (Pigure 10, at the end of the
paper), designed with silicon compilation tools; the chips
operate at 40MHz. The frost chip intersects polygons
transferred from the active polygon list with the current
scardine, generating a series of horizontal spans. The second
chip raaterizes the resulting spans, doing hidden surface
remov~ shadow plane tests and alpha blending. Multiple chip
sets can be connected m parallel with virtually no glue logic,
providing very high performance with low chip count (sections
7 smd 8 discuss parallel rasterization).

The following pseudo-code shows the basic rendering
algorithm of the prototype:

RenderFrame ()
{

I* First pass: transform, shade, sort */
foreach (Poly)
(

Transform (Poly) ;
if (! Cull (POly))

)

/,

fo.
(

Shade (Poly) ;
Bucket Sort (Po IY) ;

Second pass: rasterize *I

each (Scan line)

AddNewPolys (BucketedPolys [Scan line]) ;
Rasterize (ActiveList, Scanline) ;
RemoveFini shedPolys (ActiveList, Scanline) ;

}
)

Rendering begins when the host CPU traverses the 3D
database, generating transform~ projec~ clipped and shaded
polygons. The polygons are then bucket sorted by the number
of the fwst scanline on which they fwst become active. Once
the main database traversal is complete, the host traverses the
bucket sorted list in screen Y order, maintaining art active
polygon list which is transferred into the rasterizer to drive
rendering.

5. DISADVANTAGES OF THE
SCANLINE ALGORITHM

5.1 Database sorting

Computationally, the penalty for the two pass algorithm is
relatively minor [5]. Because the second pass is driven by the
bucket sorted lis~ only a single traversal of the database
hierarchy is required. The computational overhead of the bucket
sort itself is low compared with transformatio~ clipping and
shadiig, and is principally a problem of efficient memory
management.

A more substantial penalty is the memory used to store the
bucket sorted polygons; in the prototype, 40 bytes are required
for each transforrn~ shaded triangle. However, this is offset
by the other memory savings of the scardine algorithm; for

242

Computer Graphics, 26,2, July 1992

exampl% the 3 megabytes saved by not using a Z-buffer would
be enough to store 75K triangles (a large interactive database
for a personal mmputer). In practice, culling and the use of
more efficient primitives (e.g. quadrilaterals) further reduce
memory use.

5.2 Loss of concurrent scan conversion
Because bucket sorting must complete before scan conversion
begins, a simple implementation of the sctmline algorithm can
cause poor utilization of the graphics subsystem. For example,
if the fmt pass (transform, clip, shade) and the second pass
(rasterize) require the same length of time, the hardware will
never exceed 50% utilization. This compares poorly to a
claasicaf graphics pipeline model, where a well-balanced
pipeline cart achieve 100% utilization.

One solution to this problem is to double buffer the bucket
sorted polygon lis~ this allows the two passes of the
algorithm to run simultaneously, permitting 100% efficiency.
Unfortunately this does not reduce latency; a direct
manipulation interface which requires user feedback every frame
will have to flush both buffers, negating the advantage.
However, for tasks where latency is less critical (e.g. rotating
an object for viewing), double buffering is effective.

A more genersf solution to this problem is to shorten the time
required for fwst pass processing, which provides more time for
rasterization and increases utilization. For polygons,
postponing clipping, normal normalization and lighting to
the second pass reduces first pass computation by
approximately 50% [1]2; the savings increase as the lighting
model becomes more complex. Curved surfaces can be
transformed without tessellation, posqmning virtually all
computation until the object becomes active during the second
pass, at which point the object can be decompose-d into
renderable primitives. This tecfilque also reduces memory use
for the bucket sort.

5.3 Poor wireframe performance

Although scardine algorithms are efficient for shaded
primitives, there is a substantial performance loss for
wirehne renderirtg — in the prototype, wirebtne
perfOrmIUICG will be roughly equaf to shaded performance, ss
opposed to the 5X - 1OX ratio commonly encountered in
workstations. Because of our emphasis on shaded rendering,
this was considered acceptable.

6. ADVANTAGES OF THE SCANLINE
ALGORITHM

6.1 On-chip rasterization
A key implementation advantage of the scanline algorithm is
that the Z and aRGB memory used for pixel rendering can be
placed on the same chip as the rssterizstion hardware. For
example, the prototype stores 32 bits for z 8 for shadows, and
10 for each of aRGB, a totaf of 80 bits per pixel — a 640 pixel
scanline requires 51K bits of RAM. In the prototype, tltk
scstdirte RAM uses only 25% of the rasterizer chip’s area.

By placing the rasterization hardware on-chip with the RAM,
very high rasterization speeds can be achieved without high
off-chip bandwidth — the prototype rasterizer runs at 40M
alpha-blended Z-buffered pixels per second using 720M
byteds of on-chip RAM bandwidth. Because chip I/O is not m
the critical pam speed is limited only by core logic and RAM
performance, allowing rapid performartce increase as chip
technology advances.

6.2 Raster output and modularity

Id
Mox4ebim

mcie
s40x40b&s

Figwe 2

As scardines complete, they are transferred from the rssterizer
into the frame buffer (Figure 2). To the system, these transfers
appear as a video-like high speed raster — MS sfiiIw@

allows easy integration into future video-capable personal
computers.

Because the datatlow nom rssterizer to tlame buffer is
unidirectional, the rastcrizer does not require a tightly coupled
low latency frame buffer interface. This makes it possible to
add a sardine rendering accelerator to a system as an option
(i.e. a card) without the cost of a local frame buffer.

6.3 High resolution rendering and
antialiasing

For an NxN image, the memory requirements of the scanline Z-
buffer algorithm are proportional to N, whereas the memory

requirements of the screen algorithm are proportional to N2.3
‘Ilk allows scsnline algorithms to render large (e.g. 8Kx8K)
images with high efficiency.

Unfortunately, when the scanline buffer is stored on-chip,
scardine width is limited by RAM size — for example, the
prototype haa a maximum width of 640 pixels. This limitation
can be removed by rendering wider scardines in segments. For
each scsnlirte, the active object list is traversed multiple times,
the fmt time rasterizing pixels O to 639, the second time 640
to 1279, etc. The resulting segments abut left to right and are
indistinguishable from the result had the entire scardine been
rendered in a single pass. Only a single IraversaI of the main
database is required, avoiding the redundant transformation and
clipping which are caused by a tiling algorithm.

Because the scanline algorithm generates the image in scardine
order, traditional super-sampled sntialiasing techniques can be
implemented with an acarrtulation buffer of only a few
scardines; in particular, hosts with video support may already
include such hardware for window re-sizing and filtering. More
advanced antialissing algorithms (e.g. A-buffer) could be

2 Frm Akcley’s paper, 23 of 46.5 Mflops = 50%. nese figu~s am for a

single light SOU- ●t infinity.

3 Screen stgoridnns can render high rcsolutiuI images by tiling, but with

a substantial performance Palty for performing multiple database

traversals.

243

SIGGRAPH ’92 Chicago, July 26-31, 1992

implement@ becauseonly one scardineis rendered at a time,
the limiting factor is complexity, rather than RAM.

7. MODIFYING THE SCANLINE
ALGORITHM FOR PARALLELISM

Thus far has we have dwcuaaed the pros and cons of the
tractional scardine algorithm. However, a goal of the project
was to develop an algorithm with a highly scalable
implementation, in particular, our goal was to devise an
algorithm where performance could be increased by rendering
multiple scanlines in parallel.

7.1 Previous solutions: Screen
partitioning
One solution to this problem [13] is to partition the screen
into a number of relatively large contiguous regiona, and render
each region with an unmodified scanhne algorithm. When
complete, the regions are tiled together to produce a complete
frame. While simple to implement, this divide-and-conquer
solution suffers from poor load balancing — an image whose
complexity is unevenly distributed across the screen will not
be efficiently parallelized. Adaptive partitioning of the screen
can improve load balancing, but the setup overhead for a region
limits efficiency if fiie subdivision of the screen is attempted.
Also, this algorithm is expensive: active list hardware,
memory, and raaterization hardware are all replicated.

Instea4 we wanted a solution that renders multiple adjucent
scrmlinessimultaneously. This largely solves the load
balancing problem, as adjacent scanlines usually have similar
complex~~. Also, it has ‘the potential to exploit scanline
coherence by maintaining a single active polygon list which
shared by multiple rasterizers, each working on a separate
scanline.

7.2 Scanline coherence vs parallelism
Unfortunately, the typicrd implementation of the scardine
algorithm makes this difficult. To increase performance,
scadine renderers exrioit coherence bv convertirw the

is

interpolation calculation of the edge pi&3tneters at-tie ctment
scatdine into a forward differencing calculation in Y [6, 15]:

ytop. ybottom = top ~d bottom of edge

‘top[rt], ‘bottom[n] = parameter n at top, bottom
Hinv = inverse of height of edge
AP[~] = change/scanline of parameter [n]

Pin] = interpolated value of parameter [n]

Hinv = 1 J (Ybottom - Ytop)

@[n] = Hinv x (Pbotto~n] - Ptop[n])

‘O[n] = Ptop[n]

Pi+l[n] = Pi[n] + AP[n]

(The initialization fiutction PO[n~ has been simplified for

clarity; the actual subpixel accurate function is more complex.)
Rendering multiple scardines in parallel requires parallelizing
this forward differencing calculatio~ which is possible but
awkward in particular, the calculation of PO/n~ and the end-of-
edge test must be replicated for every interpolator.

7.3 Direct evaluation vs forward
differencing
A different approach to the problem is to abandon the forward
differencing solution and directly evaluate the interception
calculation of the object edge and the scsnline

Wy = interpolation weight at Y

Wy= (1’ - Ytop) / (Ybottom - YtoP)

l’y[n] = (Ptop(n) x(1 ‘wy)) + (Pbottom(nl x wy)

Direct evaluation is computationally more expensive than
forward differencing (for each scardine, art additional divide and
two multiplies per parameter). However, because the cost of
computation on an ASIC ia declining so rapidly, we felt
comfortable adopting a computation ally intensive solution, as
it provides advantages in the following, more problematic
areas.

7.3.1 Simplified setup

The most obvious advantage of direct evaluation is that it
greatly simplifies the setup procedure for an active object —
the calculation of Hinv , AP[n] and P0[n]4 is completely
avoided. With direct evaluation, the object is simply inserted
into the active object list; no other processing is necessary.

7.3.2 Reduced active list memory and
bandwidth

To forward dlfferrmce a parameter Pin) of N bits requires storage
of &in] , typically 2N bid, and the current parameter value

Pi[nl, also 2N bits, for a total of 4N bits. using dir=t

evaluation, otdy /’top[n] and Pbottom[nj are stored, a total of
2N bits, providing a so~o memory saving.

More irnpartan~ however, is the reduction of memory
bandwidth. To directly evaluate a parameter, Ptop[n] and

Pbottom[n] are read for a total of 2N bits of bandwidth. For
forward differencing, AP[n] and Pi[n] arere@ ~d then Pi+l[n]
is written back, a total of 6N bits or three times the bandwidth
of direct evaluation. As shown later, active list bandwidth is
directly proportional to rasterization speed; the reduction from
direct evaluation rdlows much higher performance.

Also, because direct evaluation does not require writing back
Pi+l[n], the dataflow is unidirectional, substantially
simplifying system design. For example, high latency
bursting memory such as VRAM can be used for active polygon
storage, reducing cost.

7.3.3 Data sharing for parallelism

The most important advantage of dwect evaluation is that the
data in the active object list no longer reflects the state of any
particular scardine — the same data can be used to render
multiple scardines in parallel. In facL the prototype is
designed to transfer data from the active object list to multiple
rasterizers simultaneously:

4 ~iti ~v~uatia is ~tfi~i~ly sub-pixel accurate, so sub-pixel

alignment does net have to be speciatly treated.

5 The extra N bits are fractional guard bits. The number of guard hits is
actually logz(max number of iterations), i.e. fonvard differencing an 8

bit vahrc across an 8K screen requires 15 guard bits.

244

Computer Graphics, 26, 2, July 1992

—— — I

Figure 3

In this example, the triangle description is transferred into all
three rasterizers simultaneously. Each rasterizer intercepts the
triangle with its target scanline, and renders the resulting
horizontal span. All three rasterizers then output their
scanlines, generating a three scanline strip of the final image.

Because the data is shared by all rasterizers, efficiency is high:
bandwidth is wasted only when an objeet does not intersect all
of the scanlines being rendered. In this example, the triangle
description is transferred only twice to render scardirtes O to 5
(each transfer renders three scanlines), yielding an ideal 62 =
3X increase in rasterization speed over a single rasterizer.6
However, when rendering scasdines 6 to 8, the triangle
intersects only two of the three rasterizers, leaving one idle.
Therefore, a frame that would have required 8 triangle transfers
in a single rasterizer design requires 3 transfers, for a speed
increase of 8/3 = 2.7X, and a rmterizer utilization efficiency of
(8/3) X (1/3) = 8/9= 89%.

In practice, rather than allowing the decrease in utilization to
reduee rasterization speed, the input data bandwidth is
increased. Because the rasterizers can discard a triangle that
doesn’t interseet the scanline much faster than rendering it,
increasing input bandwidth to compensate for the unnecessary
triangle transfers permits all rasterizers to run at full speed (an
input FIFO on the rasterizer is used to smooth the dataflow).
Therefore, the efficiency of a given number of parallel scanline
rasterizers can be characterized by the increase in input
bandwidth necessary to keep all rasterizers fully utilized:

Np~ = number of parallel sc~lines

~avg = average height of an active object
– bandwidth increase over a single rastenzerBpar –

Bpar = (Npar - 1) I Havg

For tie example above, with three parallel rasterizers and an
average object height of eight scanlines:

BpW=(3- 1)/8

= 2570 increase

In other words, a 25% increase in active list bandwidth over a
single rasterizer would be enough to keep three rasterizers fully
utilized.

6 For this exanrpIe, we assume performance is limited by active list

bandwidth. More complete performance analysis is irsthe following
section.

8. PERFORMANCE ANALYSIS

8.1 Rasterization performance

Figure 4

Rasterization performance can be characterized by two values:

Pim = primitive-scttrdine intersections/s

Prmler = rasterization speed (pixels/s)

The prototype hardware intersects a triangle with the current
scasdine in 14 clocks, yielding a Pi~ OE

Pim = 40 MHz / 14 clocks/intersection

= 2.86M interseetions/s

Rasterization speed is one pixel per clock, or:

Printer = 40M pixels/s

From this, rasterization performance can be approximated by
the formula:

Aavg = average pixels per primitive

Pprim = @mitives/s~nd
= min ((piti / Hmg). (Prurter / &rvg))

PPkI = rendered pixelslseeond

= Amg XPpr~

For example, a 100 pixel triangle:

Havg = 13 scanlines

Aavg = 100 pixels

Pprim = min (2.86M J 13, 40M J 100)
= 220K triangles/s

PP~/ = 100 x 220K = 22M pixels/s

8.2 Active list bandwidth

Figure 5

A key factor for system performsuu is Brast (shown in Figure

5), the bandwidth used to transfer polygons from the active list

to the rastenzer(s), For a single raaterizer this cart be computed
as:

Sprim= size of primitive

Brat = Pprim x Sprim x Havg

For the example given earlier, a triangle requires 40 bytes; the
resulting rasterizer input bandwidth is:

Brat = 220K trijs x 40 bytes x 13 scanlirtesltri

= 114 MB/s

In addition, new primitives must be added to the active objtxt
list as they first beeome active:

245

SIGGRAPH ’92 Chicaao. Julv 26-31.1992

B-= fpr~ x Sprim

So total active list bandwidth for a single rasterizer system is:

Btitii = B- + Bra

Btotal = pprim x sprint + pprim x Sprim x Havg

Btotal = pprim ~ sprint x (~ + Havg)

For the previous example

Btaa/= 220K X 40 X (1 + 13)

= 123M byteS/S

8.3 Parallelism
Rewriting the equations for active list bandwidth to include
NPar ~d Bpar km s~tion 7.3.3 yields (X is Wd to ~di~te
the sum of parallel rasterizem):

Npw = number of parallel scardines
Bpar = bandwidthincreaseover a single rasterizer

p~rim = Npar ~ Pprim
f~~[= Aog ~ p~ritn

Bfiast = @Par + ~) x Pprim x sprint x Havg

= (NPW + HWg - ~) x Pprim x Sprim

B> = P@rim x Sprim

= Nw x PPr~ x SPr~

B~otal = B> i- B~Wt

= pprim x Sprim x (~par + Havg - ~)

Figure 6 graphs B~otal, showing the relatively gradual
increase in bandwidth nwessary to drive parallel rasterizers:

Active List Bandwidth vs Parallelism
SprimxPprimxQNpar+t-tavg-1)
I-tavg=13,sprim=40.Pprim.22tK

“:L--
Npr (numberofparalklrastahrs)

Figure 6

This gradual increase is responsible for a rapid improvement in
the performance/bandwidth ratio (P~ri~B~ora/) as

parallelism is increased

Performarw#Bandwidth VS ParaUeliam
t-W.13=13,S@m=4a

6

4
/

SmnurleSlgalithm
Npar/ @@mx(2Npar+I-iavg-1))

tlis/Kbyk

2 /

Np (number ofpmtkl mterlz.ael

Figure 7

Repeating the previous example from 8.2, but with four
parallel rasterizers:

P~r~ = 4 x 220K = 880K triartgleeis
P~~/ = 100 x 880K = 88M pixels/s

B~a~r = (4 + 13- 1)X 220K X 40 = 141M byteS/S
B- = 4 X 220K X40= 35M bytes/s

B~otal = 35M + 141M = 176M bytesls

Figure 8 shows the total system dataflow, addiig the
assumption of 30 ~ update of a lM pixel fiante buffsx

Scanline Z-Buffer Algorithm
W trials,88Mpixale/.e,80 fps

T

Rseterizem 9DMW8 ma BuIler

Figure 8

Note that the bandwidth is distributed and tmidirection~
allowing an inexpensive high latency dataflow design. For thii
example, a 4X increase m rasterization performance required a
176M/123M = 43% increase in total active object list
bandwidth.

8.4 Comparison to screen Z-buffer

For comparison, we cart analyze the bandwidth that would be
required to achieve this performance using a screen Z-buffer
algoritlun. The combmed Z-buffer/ksne buffer bandwidth
necessary can be calculated by:

V = % of pixels visible

a= % of pixels with alpha blending
Bz = Z bytes~lxel

Bagb = aRGB bytes/pixel
Bz@= Pp~el x (Bz +V x (Bz +Bwgb + a x B@gb))

Assuming 50% of the pixels are visible7, 50% are blenw and
32 bits for Z artd aRGB , this would be:

7 E.g. ●t 30 @s, 88M/30 = 2.9M pixels/frame x 50% = 1.5M “visible”
pixels. Of these, only lM are actuatly visible; the others am subsequently

overwritten (or blsnded) as rendering ccmtinues.

246

Computer Graphics, 26, 2, July 1992

Bzb@= 88M X (4+ 50% X(4+4+ 50%X 4))

= 792M bytes}s

Which is 4.5X the active list bandwidth of the scardine
algorithm. A diagram of system dataflow for the screen Z-
buffer algorithm shows this more clearly:

4
Screen Z-Sufter Al@hm

eeMpixalsm,50%VisWa,50%bbnrtad
(fIumedear not lkWdnd)

(

Fktaizal

~u
Figure 9

Here, high performance bidirectional (i.e. low latency)
bandwidth is required for both the Z and aRGB buffers,
increasing cost.

9. MEASURED PERFORMANCE

Figure 11 (at the end of the paper), shows a test image ren&red
on the prototype hardware. The image has 18 torusus, each
composed of 1020 triangles; 9468 tris are rendered after
culling. Rendering the scene requires a total of 2.06 MBytes of
input data to the rasterizer. The current prototype (which is
primarily a test vehicle) is limitedby the 68040 host to
between 5K and 10K triangles/s; however, we were able to
evaluate the performance of the rasterization silicon itself by
reducing the rasterizer clock until rasterization became the
system bottleneck.

With the clock reduced to lMHz, Figure 11 requires 1.5 seconds
to render on a single rasterizer. Extrapolating performance to
the full 40MHz clock rate:

Framerate = 1 frame/ 1.5s x (40MHr/lMHz)

= 26.7 frames/s

Pprim = 9468 tris x 26.7 framesfs
= 252K tiisIS

The input bandwidth required for this performance is!

Brat = 2.06 MBytes/frame x 26.7 fhurtes/s

= 54.9 MBytes/s

A higher performance, RISC-based prototype is being
developed which wiU provide system performance that better
matches rasterization capability.

10. OTHER ISSUES

10.1 Latency

For the examples presented here, the delay from start of
database traversal to screen update (i.e. swap buffers) is the
same for the screen and scardine algorithms. However, if
double buffering is rtot being used (for exampl~ a very large
database is being drawn on the screen while the user watches), a

screen algorithm would be perceived as having lower latency,
as the screen update would begin sooner. This wasn’t considered
a serious disadvantage, however, as our target ia interactive
applications running at high frame rates, necessitating a
double buffered display.

10.2 Hit testing

The sardine algorithm has advantages for direct manipulation
applications wiih an interaction loop like:

while (FOREVER)
(

OrawDatabase () ;
Get Mouse (&x, &y) ;
Select edObject = Hit Test Database
UpdateDatabase (Select edObject) ;

}

(x, y) ;

For this interaction model, the Y-sorted object activation list
created during DrawDatabaaeo can be used to dramatically
accelerate HitTestDatabaseo by providing a list of only those
objects visible on scanline y. This is an improvement over the
classic screen Z-buffer model, where HitTestDatabaseo requires
a second travemal of the database and hit testing of every
primitive.

11. ACKNOWLEDGEMENTS

Lee Mighdoll was a major contributor to the early stages of this
project.

This research was performed in the Systems Technology
Research Group of Apple Computer, Inc. Thanka to Frank
Crow, Brian Heaney, Jill Huchital, David Jevans, Al Kossow,
Lee Mighdcdl and Libby Patterson for their reviews.

12. REFERENCES

1.

2.

3.

4.

5.

6.

7.
8 For ~g ~age, ~Pt ~dwidti is reduced approxirrtatelY30% by

shared ve~x data.

Akeley. Kurt and T. Jenrtohtk, “High-Performance
Polygon Rendering”, Computer Graphics, Vol. 22, No. 4,
August 1988, 239-246

Apgar, Brian, B. Bersack and A. MammeIL “A Display
System for the Stellar Graphics Supercomputer Model
GS1OOO”, Computer Graphics, Vol. 22, No. 4, August
1988, 255-262

Catmull, E., “A Subdivision Algorithm for Computer
Display of Curved Surfaces”, UTEC-CSc-74-133,
Computer Science Department,University of Utalu Salt
Lake City, UT, December 1974

Clark James, ‘The Geometry Engine: A VLSI Geometry
System for Graphics”, Computer Graphics, Vol. 16, No. 3,
July 1982, 127-133

Deering, Michael, S. Winner, B. Schediwy, C. Duffy and
N. HunL ‘The Triangle Processor and Normal Vmtor
Shader: A VLSI System for High Performance Graphics”,
Computer Graphics, Vol. 22, No. 4, August 1988, 21-30

Foley, James, A. van Dam, S. Feiner and J. Hughes,
“Computer Graphics Rinciples and Ractice, 2nd Edition”,
Addison-Wesley, 1990, 96-99 (basic scan conversion),
201-283 (transformation), 680-685 (sardine
algorithms), 885-887 (scanline rasterization)

Foumier, Alain and D. Fussell, “On the Power of the Frame
Buffer”, Transactions on Graphics, Vol. 7, No. 2, April
1988, 103-128

247

SIGGRAPH ‘92 Chicago, July 26-31, 1992

8.

9.

10.

11.

12.

13.

14.

15.

Fuchs, Henry and J. Poulton, “Pixel-Planes: A VLSI-
oriented Design for a Raster Graphics Engine”. Computer
Graphics, Vol. 15, No. 3, August 1981, 80-81

Gharachorloo. Nader, S. Gupta, R. Sproull and I.
Sutherland, “A Characterization of Ten Rasterization
Techniques”, Computer Graphics, Vol. 23. No. 3. July
1989. 355-368

Haeberli, Paul and K. Akeley. ‘The Accumulation Buffer:
Hardware Support for High-Quality Rendering”, Computer
Graphics, Vol. 24. No. 4, August 1990. 309-318

Kirk, David and D. Voorhies, ‘The Rendering Architecture
of the DNlOOOOVS”, Computer Graphics, Vol. 24. No. 4,
August 1990. 299-307

Myers, A. J., “An Efficient Visible Surface Program”,
Report to the National Science Foundation, Computer
Graphics Research Group, Ohio State University,
Columbus, OH, July 1975

Niimi. Haruo, Y. Imai, M. Murakami, S. Tomita and H.
Hagiwara, “A Parallel Processor System for Three-
Dimensional Color Graphics”. Computer Graphics, Vol.
18, No. 3, July 1984, 67-76

Rhoden, Desi and C. Wilcox, “Hardware Acceleration for
Window Systems”, Computer Graphics, Vol. 23, No. 3,
July 1989, 61-67

Watkins, G. “A Real-Tie Visible Surface Algorithm”,
Computer Science Departmenf University of Utah.
UTECH-CSC-70-101, June 1970

Figure 10

Rasterixer chips

Figure 11

9468 triangle image rendered on prototype

248

