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A computer graphics system having a processor for gener 
ating objects for display, a multi-layered Z-buffer for storing 
data according to their relative depths, the processor also 
compositing the data stored in the Z-buffer, a frame buffer 
for storing composited data, a display for displaying an 
image as a number of pixels responsive to the composited 
data in the frame buffer, and two registers for facilitating the 
Z-buffering process is disclosed. One of the registers stores 
a number indicating how many of the layers in the Z-buffer 
contain visible data dependent on opacity of existing 
objects. In the other register, a number of addresses corre 
sponding to each of the layers of the Z-buffer are stored. 
Each address specifies a location where data of one of the 
layers is stored. A determination is made as to which layer 
data associated with an incoming object is to be inserted. 
This determination depends on the contents of the first 
register as well as the value of the incoming object relative 
to those of objects already stored in the Z-buffer. The 
addresses of the second register are arranged to correspond 
to the appropriate layers in response to insertion of the 
incoming data. 
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21 Claims, 5 Drawing Sheets 
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1. 

Z-BUFFER STORAGE BASED ON OPACTY 
AND DEPTH USING POINTERS 

This is a continuation of application Ser. No. 08/060,299, 
filed May 10, 1993, abandoned. 

FIELD OF THE INVENTION 

The present invention pertains to the field of computer 
graphics display systems. More particularly, the present 
invention relates to an apparatus and method for a high 
performance multiple layer Z-buffer in a computer graphics 
display system. 

BACKGROUND OF THE INVENTION 

One area in which computer systems are finding increased 
application is in that of the graphical arts. Technological 
advances in the speed, processing power, and memory of 
computers coupled with lower costs have made them ideally 
suited for use in graphical display systems. Computer gen 
erated displays enable users to visualize two and three 
dimensional objects. Users can group the information con 
tent of a graphical display much more effectively than if the 
same information were to be presented in other formats. A 
picture is worth a thousand words. 

Furthermore, computer graphics also provide a natural 
and fluid interaction between the computer and a user. 
Changes to a display are input to the computer which then 
effectuates those desired changes by modifying the display 
accordingly. This process provides a convenient vehicle for 
modeling, predicting, and experimenting with various 
events. And with the development of high resolution display 
screens, increasingly complex geometric objects can be 
rendered with greater precision and clarity. Some examples 
of computer graphics applications include flight simulators 
for training pilots, computer aided design for aiding engi 
neers and architects, diagnostic medical scanners for 
doctors, animated pictures in movies and video games, etc. 

Basically, a computer graphics system can be broken into 
three components: a frame buffer, a monitor, and a display 
controller. The frame buffer is a digital memory for storing 
the image to be displayed as a series of binary values. The 
monitor is comprised of a screen having an array of picture 
elements, known as pixels. Each pixel represents a dot on the 
screen and can be programmed to a particular color or 
intensity. Thousands of individual pixels so programmed are 
used to represent a displayed image. It is these individual 
pixel values which are stored in the frame buffer. A display 
controller is an interface used for passing the contents of the 
frame buffer to the monitor. The display controller reads the 
data from the display buffer and converts it into a video 
signal. The video signalis fed to the monitor which displays 
the image. 
Images are repeatedly rendered into the display over and 

over again, with each new frame representing a new position 
or shape of the image to be viewed. The image must be 
repeatedly sent to the monitor in order to maintain a steady 
picture on the screen. Due to the retentiveness of the human 
eye, the monitor needs to be refreshed at a minimum of 30 
times a second. Otherwise, the display will flicker in a very 
annoying and distracting manner. In today's computer 
graphics systems, the refresh frequency is typically around 
72 hertz (i.e., 72 times a second). A faster refresh rate 
produces less flicker. Hence, the duration for displaying an 
image is relatively small, approximately /2 of a second or 
14 milliseconds. Given these restraints, it is imperative to 
speed up the graphics drawing process to avoid sluggish 
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2 
response times and jerky movements of displayed images. 
Moreover, the faster an image can be drawn, the more 
information which can be provided to the display. This 
results in smoother, more dynamic, and crisper images. 

Typically, a three-dimensional graphics rendering device 
that renders images into the frame buffer also stores addi 
tional information per pixel (e.g., Alpha, Z. etc.), which is 
not required by the frame buffer itself. Alpha values repre 
sent a blending function. Z values represent a pixel’s dis 
tance from the viewer. Typically, small Z values indicate that 
the object is close to the observer, whereas large Z values 
indicate that the object is further away. This additional Z. 
storage per pixel is typically referred to as a Z-buffer. 
By implementing a Z-buffer, usually in the form of 

DRAMs, Z values can be stored. The Z-buffer contains 
distance information which is used in indicating whether one 
object is displayed in front of or behind another object. In 
most conventional Z-buffers, a Z-sort operation is performed 
by comparing the Z value of incoming data with the Z value 
of pre-existing data. If the incoming data is closer (i.e., it has 
a smaller Z value), the incoming color data replaces the 
pre-existing data in the frame buffer, and the old Z value is 
replaced by the new Z value. Otherwise, the incoming data 
is discarded. When there is no more incoming data, the 
Z-sort is complete, and the contents of each frame buffer? 
Z-buffer location represents the final color/intensity for that 
particular pixel. 
The Z-sort operation is rather straightforward if all of the 

objects represented by the data are opaque. However, if the 
object in the buffer is not opaque, it is necessary to retain 
information about the data which is discarded in order to 
determine the final color intensity of a pixel. To avoid the 
loss of the data, many Z-buffer systems require that all of the 
non-opaque data be rendered after all opaque data has been 
rendered and that the non-opaque data be rendered in Z 
sorted order (e.g., closest to furthest). Any non-opaque 
objects which are behind the opaque object in the buffer are 
discarded. The remaining non-opaque objects are compos 
ited with the data in the frame buffer and the result is stored 
in the frame buffer so that no requisite information is lost. 
Since the compositing operation must be performed in a 
specific Zorder, the non-opaque objects must be arranged by 
Z-depth (i.e., either closest to furthest or furthest to closest) 
before being compared with the Z value of the data in the 
buffer, 

Unfortunately, this method of rendering non-opaque 
objects has a number of shortcomings. Sorting the non 
opaque objects by Z value is computationally expensive. 
Also, this method does not render interpenetrating non 
opaque objects correctly; these must be explicitly tested for, 
and specially processed, further increasing computation. 
Consequently, performing the Z sort process reduces the 
amount of time left to actually draw the images which 
detrimentally impacts the overall display process. 

Other systems have been proposed to solve the problem of 
rendering non-opaque objects which avoid these shortcom 
ings. These systems usually store more than one Z and color 
value per pixel, allowing some number of the closest non 
opaque objects to be saved, and then composited later. 
However, these systems require a greatly increased number 
of Z-bufferRAM accesses necessary to maintain and sort the 
multiple Z values per pixel. This increases the bandwidth 
requirements of the Z-buffer memory, reducing performance 
and/or increasing cost. However, an advantage of this 
method is that it defers compositing until after the per pixel 
Z sort is complete, which improves performance by avoid 
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ing unneccessary compositing of objects which are later 
obscured by a closer object. 

Therefore, there is a need in prior art computer graphics 
systems for an apparatus or method which is capable of 
minimizing the time required to perform Z operations. It 
would be preferrable if such an apparatus or method could 
defer compositing until after Z sort is completed without 
losing the data necessary for compositing non-opaque 
objects. It would also be highly preferable if such a mecha 
nism could minimize the number of DRAM accesses. 

SUMMARY AND OBJECTS OPTHE 
INVENTION 

The present invention can be applied to computer graph 
ics systems. A multiple layer Z-buffer containing Z values 
for each of the pixels is controlled according to the values in 
two registers which are instanced for each pixel. One 
register, referred to as the ActiveLayers register, contains a 
value indicating how many of the layers are occupied with 
potentially visible object data. The other register, referred to 
as the LayerPointer register, contains pointer values indi 
cating the memory location to which the data for each layer 
is stored. 

After one frame has completely rendered, the ActiveLay 
ers register is initialized to 0. The first incoming object 
increments the ActiveLayers register. If a subsequent incom 
ing object falls behind an opaque object it is discarded, 
regardless of whether it is opaque or not. If the subsequent 
incoming object is opaque (and is not hidden), the Active 
Layers register is decremented once for each pre-existing 
object which becomes hidden behind the incoming opaque 
object. The ActiveLayers register is then incremented to 
reflect the incoming opaque object. Otherwise, if a subse 
quent incoming object is non-opaque (and is nothidden), the 
ActiveLayers register is incremented. 
The LayerPointer register contains a number of pointers 

equal to the number of layers being implemented. Each 
pointer specifies a unique address. If an incoming object is 
hidden behind a pre-existing opaque object, the incoming 
object is discarded, and the LayerPointer register remains 
unchanged. Otherwise, the layer wherein the incoming 
object should be inserted is determined. This determination 
is based on the incoming object's Z values relative to those 
Z values already existing in the buffer. The opacity of the 
incoming object affects the ActiveLayers register. The data 
of the incoming object is written to the address specified by 
a pointer. The pointers are then adjusted accordingly. 

In the currently preferred embodiment, the incoming data 
is written to the address specified by the pointer correspond 
ing to the last layer. The InsertLayer for the incoming data 
is determined. The pointer from the last layer is inserted in 
the InsertLayer. All the pointers of those layers following 
that of the InsertLayer is shifted one place to the right. The 
pointers to the left of the InsertLayer remains unchanged. 
Manipulating the values in the ActiveLayers and Layer 
Pointer registers optimizes the Z-buffering process. 

BRIEF DESCRIPTION OF THE DRAWENGS 

The present invention is illustrated by way of example, 
and not by way of limitation, in the figures of the accom 
panying drawings and in which like reference numerals refer 
to similar elements and in which: 

FIG. 1 illustrates a computer system upon which the 
preferred embodiment of the present invention can be imple 
mented. 
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4 
FIG. 2 is a block diagram showing a graphics system 

utilizing scanline Z-buffering. 
FIG. 3 shows the various different combinations of how 

incoming opaque and non-opaque objects are handled. 
FIG. 4 shows an example of how the ActiveLayers and 

LayerPointer registers of the present invention operate for 
six consecutive incoming objects. 

FIG. 5 is a circuit diagram illustrating one mechanism for 
maintaining the LayerPointer register. 

FIG. 6 is a flowchart showing the operations performed 
during the Z-sort, 

DETALED DESCRIPTION 

A high performance multiple layer Z-buffer in a computer 
graphics system is described. In the following description. 
for the purpose of explanation, numerous specific details 
such as registers, bit lengths, number of layers, etc., are set 
forth in order to provide a thorough understanding of the 
present invention. It will be apparent, however, to one 
skilled in the art that the present invention may be practiced 
without these specific details. In other instances, well-known 
structures and devices are shown in block diagram form in 
order to avoid unnecessarily obscuring the present inven 
tion. 

Referring to FIG. 1, a computer system upon which the 
preferred embodiment of the present invention can be imple 
mented is shown as 100. Computer system 100 comprises a 
bus 101 for the internal transmission of digital data. A 
central processing unit 102 for processing digital data is 
coupled with bus 101 for processing information. 
Furthermore, a number of co-processors 103 can be coupled 
onto bus 101 for additional processing power and speed. 
Computer system 100 further comprises a random access 

memory (RAM) 104 (referred to as main memory) which is 
also coupled to bus 101. Main memory 104 is used in storing 
information and instructions which are executed by proces 
sor 102. Main memory 104 also may be used for storing 
temporary variables or other intermediate information dur 
ing execution of instructions by CPU 102. Computer system 
100 also comprises a read only memory (ROM) or some 
other type of static storage device 106. ROM 106 is coupled 
to bus 101 and is used to store static information and 
instructions for processor 102. A data storage device 107 
(e.g., a hard disk drive, floppy disk drive, etc.) drive can be 
coupled to bus 101 for storing information and instructions. 
Also coupled to bus 101 is hardware graphics accelerator 

108, frameZ-buffers 109, and display controller 110. Hard 
ware graphics accelerator 108 is designed to accelerate 
interactive 3D graphics software extensions. It comprises an 
ASIC, a static RAM cache, and texture mapping RAM. 
Accelerator 108 outputs a high bandwidth pixel stream to 
frame/Z-buffer 109. Simultaneously, the host CPU 102 
generates the signal containing the primitives which are 
input to and rendered by accelerator 108. Display controller 
110 interfaces computer system 100 to a display device 121. 
One example of a display device 121 is a cathode ray tube 

(CRT) used for displaying information to a computer user. 
An alphanumeric input device 122, such as a keyboard, may 
also be coupled to bus 101, as well as a cursor control device 
123. A cursor control device 123 is used for controlling 
cursor movement on display device 121. This input device 
typically has two degrees of freedomin two axes, a first axis 
(e.g., x) and a second axis (e.g., y) which allows the device 
to specify any position in a plane. In the present invention, 
a three-dimensional cursor having a third degree of freedom 



5,920,687 
5 

in a Z-axis is utilized. Some examples of a cursor control 
device 123 include a mouse, joystick, trackball, touch pad, 
etc. 

The present invention can be applied equally to conven 
tional screen Z-buffering as well as scanline Z-buffering 
techniques. In screen Z-buffering, the state information 
necessary for rendering a pixel is stored for every pixel on 
the screen. Each object to be rendered is transformed and 
rasterized independently. Conventional screen Z-buffering 
techniques often involve very high bandwidths plus large 
quantities of fast memory and are often coupled with sophis 
ticated caching and prefetching mechanisms. In comparison, 
scanline Z-buffering presorts the object database in screen 
space and renders each scanline individually. One scanline 
of pixel state information is kept. 

FIG. 2 is a block diagram showing a graphics system 
utilizing scanline Z-buffering. The host CPU 201 is used for 
transformation, shading, and active list maintenance. Scan 
line rasterizer 202 performs shading and hidden surface 
removal via a Z-buffer 203, shadow volumes, and alpha 
blending 204. The rasterizer 202 intersects polygons trans 
ferred from the active polygon list with the scanline and 
generates a series of horizontal spans. The resulting spans 
are rasterized. Furthermore, hidden surface removal, shadow 
plane tests, and alpha blending are performed. Rendering 
begins when the CPU 201 traverses the 3D database and 
generates transformed, projected, dipped, and shaded poly 
gons. The polygons are bucket sorted by the number of the 
first scanline on which they first become active. Once the 
main database traversal is complete, the host traverses the 
bucket sorted list in screen Y order, maintaining an active 
polygon list which is transferred into the rasterizer 202 for 
rendering into RGB frame buffer 205. 
Z values are represented as a floating point number with 

a 23-bit fractional normalized mantissa and an 8-bit expo 
nent. There is also a one bit tag which is asserted if the object 
is frontfacing. If during the comparison the two Z values are 
equal. it is necessary to determine if incoming object is 
frontfacing. There is a flag in the object data which is 
designed for this purpose. If the incoming object is front 
facing it is considered to be in front of the object which is 
in the buffer. In the present invention, the Z-buffer is 
comprised of multiple layers and multiple pixels for han 
dling opaque as well as non-opaque objects. Although any 
number of layers and pixels can be implemented with the 
present invention, eight layers and eight pixels are utilized 
in the currently preferred embodiment. 
The Z value of incoming data for a particular pixel is 

compared with each layer in the buffer until it is determined 
where or whetherit should be placed in the buffer. There are 
two registers, an ActiveLayers register and a LayerPointer 
register associated with each pixel for optimizing the sorting 
process. The ActiveLayers register indicates how many of 
the layers are occupied with potentially visible object data. 
Because non-opaque objects are supported, it is not known 
whether an object is visible until after the compositing 
operation is completed. The LayerPointer register indicates 
in which memory location the data for each layer is to be 
stored. 
The operation of these two registers are now described in 

detail. The Active layers register is first initialized to zero. 
When the first object is received it is written into the layer 
of the Z-buffer as indicated by the ActiveLayers register. 
Since the ActiveLayers register had been initialized to zero, 
the first object is thereby written to Layer 0, the ActiveLay 
ers register is incremented by one. When a successive 
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6 
incoming object is received its value is compared with the Z 
value of the object in layer 0. The opacity of the incoming 
object only affects the ActiveLayers register and not the 
LayerPointer register nor the Z-buffer. Whether the incom 
ing object is written is determined by the opacity of objects 
in the buffer and overflow. Its write location is determined by 
the relative Z values. 

FIG. 3 shows the various different combinations of how 
incoming opaque and non-opaque objects are handled. 
Examples of each possible combination are given illustrat 
ing how the objects are assigned to the different layers along 
with the corresponding changes made to the ActiveLayers 
register. In example 1, the ActiveLayers register is initialized 
to a value of zero after completion of rendering. Whenever 
an incoming object 301 is received, it is written into the layer 
designated by the ActiveLayers register. In example 1, the 
first object is opaque and is written into layer 0. The 
ActiveLayer register is then incremented by one (i.e. incre 
mented from 0 to 1). In example 2. a second incoming object 
302 is received. Object 302 is opaque and has a smaller Z 
value than object 301 (i.e., object 302 is closer to the 
viewport than object301). The incoming data corresponding 
to object 302 is written to layer 0. The contents of the 
ActiveLayers register remains unchanged (i.e., it remains set 
at 1). Note that the data corresponding to object 301 has been 
effectively overwritten. It still exists in the Z-buffer RAM; 
only the LayerPointer register changes. Hence, if the incom 
ing object falls behind a pre-existing opaque object, the 
incoming object is "hidden" behind the opaque object and 
can thereby be discarded. 

Example 3 illustrates the events occurring if the second 
incoming object 302 has a greater Z value than object 301 
which resides in layer 0. Since object302 is "hidden" behind 
opaque object 301, its incoming value can be safely dis 
carded. Everything else remains the same. In example 4, the 
incoming object 303 is non-opaque and has a smaller Z. 
value. Hence, the data corresponding to object 301 is moved 
so as to correspond to layer 1, and the incoming data is 
written to layer 0. The ActiveLayers register is incremented 
to 2. In example 5, the incoming non-opaque object has a 
larger Zvalue. Consequently, its incoming data is discarded. 

Referring to examples 6-9, the pre-existing object 304 is 
non-opaque. In example 6, an incoming object 305 is opaque 
and has a smaller Z value. Hence, the incoming data is 
written to layer 0 and the data associated with object 304 is 
discarded. If the incoming opaque object 305 has a larger Z. 
value, its data corresponds to layer 1; the ActiveLayers 
register is incremented to 2; and the data corresponding to 
object 304 remains stored in layer 1, depicted in example 7. 

Example 8 illustrates the events which occur when the 
incoming object is non-opaque and has a smaller Z value. 
Under such circumstances, the data corresponding to pre 
existing object 304 is moved to layer 1; the incoming data 
is written to layer 0, and the ActiveLayers register is 
incremented by one to 2. In example 9, the incoming 
non-opaque object 306 has a larger Z value. Consequently, 
the incoming data is changed to correspond to layer 1 and 
the ActiveLayers register is incremented to 2. Table 1 below 
lists the eight different possible scenarios associated with an 
incoming object. 
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TABLE 1. 

Pre-existing Z Walue of 
Object in Incoming Incoming ActiveLayers 
Layer 0 Object Object Layer 0 Layer 1 Register 

Opaque Opaque Smaller Object non- 1. 
Opaque Opaque Larger Object 1. 
Opaque Non-opaque Smaller Object Object, 2 
Opaque Non-opaque Larger Object 1. 
Non-opaque Opaque Smaller Object 1. 
Non-opaque Opaque Larger Object Object 2 
Non-opaque Non-opaque Smaller Object Object, 2 
Non-opaque Non-opaque Larger Object Object 2 

By implementing an ActiveLayers register, only those 
layers which contain potentially visible objects are com 
pared during the sort operation. Note that without using an 
ActiveLayers register or its equivalent, incoming data would 
be required to be checked against all eight layers. Reading 
and writing the object data is costly in terms of speed since 
it requires accessing the Z-buffer DRAM. Note that typical 
prior art Z-buffers only have one layer, two at the most, so 
only one or two reads are required to complete the sort 
operation. Multiple layers complicate the Z-sort operation, 
but are necessary to defer the compositing operation and to 
eliminate the need for ordering the non-opaque data. 
The ActiveLayers register also simplifies the removal of 

obstructed objects from the Z-buffer. If any object falls 
behind an opaque object, it must be removed from the buffer 
which requires that the RAM be written. Instead of writing 
the RAM, the value in the ActiveLayers register is adjusted 
to reflect the new condition. 

Furthermore, an ActiveLayers register saves time by 
eliminating the need to initialize each of the eight layers to 
the maximum Z value (i.e., infinity). Rather, after each frame 
has been completely rendered, the ActiveLayers register is 
reset to zero. In typical prior art Z-buffers, all of the Z values 
would have to be written to the maximum value and to a 
transparent object data. 

In addition to the ActiveLayers register, a second, Lay 
erPointer register, is implemented to minimize Z-buffer 
DRAM accesses. The LayerPointer register contains a num 
ber of pointers equal to the number of layers being utilized. 
In the currently preferred embodiment, eight 3-bit pointers 
are utilized. A pointer specifies a unique address of an 
object's data corresponding to each of the eight layers. The 
first pointer corresponds to layer 0. The second pointer 
corresponds to layer 1. Each successive pointer corresponds 
to each successive layer, up to layer 7. 
By utilizing these pointers in the LayerPointer register, 

the movement of an object from one layer to another can 
essentially be simulated without actually reading from and 
writing to the Z-buffer. The present invention does not 
require reading the data of the pre-existing object, writing it 
into another layer, and then writing the incoming object's 
data into the first layer. Instead, the present invention 
accomplishes the same result by manipulating pointer val 
ues. In the currently preferred embodiment, the lowest 
pointer (i.e., the one corresponding to layer 7) is used to 
specify the address of an incoming object being written into 
the Z-buffer. In other words, the incoming data is written to 
the address specified by the pointer corresponding to layer 7. 

FIG. 4 shows an example of how the ActiveLayers and 
LayerPointer registers of the present invention operate for 
six consecutive incoming objects. Once the rendering of a 
frame has been completed, the ActiveLayers register is 
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8 
initialized to 0 and the LayerPointer register is set so that 
each pointer specifies a unique address. Note that the point 
ers need not be specified in any sequential order, but each 
pointer must specify a unique address. In the example, the 
eight 3-bit pointers are initialized to the following addresses: 
7, 6, 5, 4, 3, 1, and 0 corresponding to layers 0-7, respec 
tively. 
The first incoming object 401 is opaque and has a Z value 

of 15. The pointer corresponding to layer 7 specifies an 
address of 0. Since it is the first object, the data should be 
inserted in layer 0. The ActiveLayers register is incre 
mented. A barrel shift-right by one place is performed on 
layers 0-7 of the LayerPointer register. Hence, the Active 
Layers register becomes 1. and the contents of the Layer 
Pointer register becomes 0, 7, 6, 5, 4.3. 2, and 1. Note that 
the incoming data stored in address 0 now appropriately 
resides in layer 0. 
A second incoming object 402 is opaque and has a Z value 

of 10. Its data is written to the address specified by the 
pointer of layer 7. In this case, the data is written to address 
1. The Z values of object 402 is compared with that of object 
401. Since object 402 is opaque and has a smaller Z value 
than object 401, object 401 is hidden behind object 402. 
Consequently, the incoming data should be inserted in layer 
0. The ActiveLayers register remains unchanged. A barrel 
shift-right is performed on layers 0-7 of the LayerPointer 
register, such that it becomes 1, 0, 7, 6, 5, 4, 3, and 2. Note 
that the pointer of layer 0 correctly specifies the address 
containing the data of object 402. Note also that the data of 
object 401 still resides in address 0, but since the Active 
Layers register only specifies one layer, this data is rendered 
meaningless. 
The third incoming object 403 is non-opaque and has a Z 

value of 8. The data of object 403 is written to address 2, as 
specified by the pointer of layer 7. Object 403 is in front of 
object 402 because its Z value of 8 is less than the Z value 
of 10 for object 402. Consequently, the incoming data 
should be inserted in layer 0. Since object 403 is non 
opaque, the data corresponding to object 402 must still be 
maintained. Thus, ActiveLayers register is incremented. A 
barrel shift-right operation is performed for layers 0-7 of the 
PointerLayer register. The LayerPointer register now reads 
2. 1, 0, 7, 6, 5, 4, and 3. The result is that the ActiveLayers 
register specifies two layers (i.e., layers 0 and 1). The pointer 
in layer 0 correctly specifies address 2, which contains the 
data for object 403, and the pointer in layer 1 specifies an 
address of 1, which contains the data for object 402. 
A fourth incoming object 404 is non-opaque and has a Z 

value of 9. The pointer of layer 7 specifies an address of 3. 
The incoming data is written to that address. Since the Z 
value of object 403KZ value of object 404<Z value of object 
402, the data of object 404 should be inserted in layer 1, 
in-between objects 403 and 402. The data of object 402 
should be altered to correspond to layer 2 while that of 
object 403 should remain layer 0. This is effectuated by 
performing a barrel shift-right operation only for levels 1-7. 
The resulting contents of the LayerPointer register is 2, 3, 1. 
0, 7, 6, 5, and 4. The ActiveLayers register is incremented. 
Thus, the pointers of the first three layers specify addresses 
2, 3, and 1 which respectively correspond to that of objects 
403, 404, and 402. 
The fifth incoming object 405 is non-opaque and has a Z 

value of 11. Since it falls behind the opaque object 402, the 
incoming data is discarded. No changes are made to either 
the ActiveLayers or LayerPointer register. 
The sixth incoming object 406 is opaque and has a Z value 

of 5. Object 406 falls in front of and hides all the pre-existing 
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objects 402–404. The incoming data is written to address 4 
and is inserted to layer 0. Abarrel shift-right is performed for 
layers 0-7 of the LayerPointer register, so that it reads 4, 2, 
3, 1, 0, 7, 6, and 5. Furthermore, the ActiveLayers register 
is reset to 1. It should be pointed out that modifying the 
ActiveLayers and LayerPointer registers is much quicker 
than accessing the DRAM to write the maximum Z value 
and the transparent alpha value as the registers occupy far 
fewer bits. 

In one embodiment, the incoming object is checked to 
determine whether it falls behind the backmost object of the 
Z-buffer. If it falls behind the backmost object and that 
object is opaque, the incoming data is discarded. If the 
backmost object is not opaque, the incoming data is placed 
behind it, and the ActiveLayers and LayerPointer registers 
are modified accordingly. In this embodiment, only one 
comparison is needed to determine whether the incoming 
data should be discarded. 

FIG. 5 is a circuit diagram illustrating one mechanism for 
maintaining the LayerPointer register 500. Once the layer 
wherein an incoming object's data is to be inserted (i.e., the 
InsertLayer) is determined, the Rotate and Insert signals are 
generated according to Table 2 below. 

TABLE 2 

Insert 
Layer Rotate insert 

O 0xF Ox 80 
Ox3F Ox 40 

2 Ox1F Ox2O 
3 Ox OF Ox O 
4. Ox O. Ox08 
5 Ox 03 OXO4 
6 OXO1 Ox O2 
7 Ox OO OXO1 

The upper multiplexers 501-508 are used to rotate the 
pointers, especially for those situations wherein the incom 
ing object is placed in front of other pre-existing objects in 
the Z-buffer. The rotate operation is performed by a barrel 
shift-right. The barrel shift-right is executed according to the 
8-bit digital Rotate signal on line 521. Each of the eight bits 
controls each of the eight multiplexers 501-508. In other 
words, control bit 0 of the Rotate signal controls multiplexer 
501; bit 1 controls multiplexer 502; etc. The control bit 
selects which of the two inputs to a multiplexer is to be 
output. Note that LayerPointer register 500 has eight layers 
and three bits per layer, for a total of 24 bits. Each multi 
plexer has two 3-bit inputs supplied by the LayerPointer 
register. If the control bit is a 0, the three bits corresponding 
to a particular pointer is selected for output on line 523. 
Conversely, if the control bit is a 1, the three successive next 
significant bits are selected for output on line 524. For 
example, if control bit 0 is a 0, bits 0-2 of the LayerPointer 
register 500, is selected for output by multiplexer 501. If 
control bit 0 happens to be a 1, bits 3-5 are selected for 
output by multiplexer 501. 
The lower multiplexers 511-518 are used to move the 

pointer associated with layer 7 prior to receipt of incoming 
data, to the layer which the incoming object data is to be 
inserted. The insert operation is performed according to the 
8-bit digital Insert signal on line 522. Each of the eight 
control bits of the Insert signal controls one of the eight 
multiplexers 511-518. A control bit selects for output one of 
the two input signals to a multiplexer. One input signal is a 
3-bit output from one of the upper multiplexers. The other 
input signal is the three least significant bits of the Layer 

O 

15 

25 

30 

35 

45 

50 

55 

65 

10 
Pointer register 500 (i.e., bits 0-2 which correspond to the 
pointer of layer 7). For example, if control bit 0 of the Insert 
signal is a 0, multiplexer 511 selects the 3-bit output from 
multiplexer 501 for output on line 524. If control bit 0 were 
a 1, multiplexer 511 selects bits 0-2 of the LayerPointer 
register 500 for output on line 524. 
The operation of this LayerPointer circuit is now 

described in reference to the incoming objects depicted in 
FIG. 4 and described above. A reset signal on line 525 
initializes the LayerPointer register 500 to a value of 7. 6.5. 
4.3.2, 1, and 0=111110101100011010001000. When data 
corresponding to object 401 is received, its InsertLayer is 
determined to be 0. Consulting Table 2, an InsertLayer of 0 
translates into a Rotate signal of Ox7F=01111111, and the 
Insert signal is 0x80=10000000. According to the Rotate 
signal, multiplexer 501 selects bits 3-5 for output; multi 
plexer 502 selects bits 6-8; multiplexer 503 selects bits 
9-11; multiplexer 504 selects bits 12-14; multiplexer 505 
selects bits 15-17; multiplexer 506 selects bits 18-20; 
multiplexer 507 selects bits 21-23; and multiplexer 508 
selects bits 21-23. And according to the Insert signal, 
multiplexers 511-517 select the outputs of multiplexers 
501-507 respectively; multiplexer 518 selects bits 0-2 for 
output. The result is that the pointers for layers 0-6 are 
shifted to the right. The pointer corresponding to layer 7 is 
inserted into layer 0. The resulting contents of the Layer 
Pointer register is 000111110101100011010001=0, 7, 6, 5, 
4, 3, 2, 1. 

FIG. 6 is a flowchart showing the operations performed 
during the Z-sort, wherein the contents for the ActiveLayers 
and LayerPointer registers are calculated. In the first 
operation, step 601, the LayerCounter is initialized to 0; the 
RAM read address (RAdd) is initialized to LayerPointer Ol; 
and the RAM write address (WAdd) is initialized to Layer 
Pointer (7). A determination is then made as to whether the 
ActiveLayers register is 0, step 602. If so, the ActiveLayers 
register is incremented to 1; the InsertLayer is set to 0; and 
ZIn is written into the RAM at the write address. If the 
ActiveLayers register is not 0, the Z values for each of the 
objects are compared, step 604. If the Z value of the 
incoming object is closer than the Z value presently asso 
ciated with layer 0, step 605 is performed. Otherwise, step 
617 is executed. In step 617, a determination is made as to 
whether the Z value of the incoming object is equal to the Z 
value presently associated with layer 0 and the Front bit is 
set. If so, step 605 is executed. Otherwise, step 609 is 
executed. 

In step 605, a determination is made as to whether the 
incoming object is opaque. If the incoming object is opaque, 
the ActiveLayers register is set to the LayerCounter plus 1. 
step 606. The InsertLayer is set to the LayerCounter, and ZIn 
is written into the RAM at the write address, step 607. If it 
is determined that the incoming object is not opaque, the 
ActiveLayers register is incremented, step 608. Step 607 
wherein the InsertLayer is set to the LayerCounter and the 
Zn is written. 

In step 609, the LayerCounter is incremented. A determi 
nation is made as to whether the LayerCounter is equal to the 
ActiveLayers, step 610. If they are equal, this signifies that 
there are no more Z values in the RAM for comparison. In 
that case, a determination is made as to whether the object 
in the last layer is opaque, step 611. If the object in the last 
layer is not opaque, step 608 is executed. Otherwise, ZIn is 
not visible, and it is discarded, step 612. 

If the LayerCounter is not equal to the value in the 
ActiveLayers register, it becomes necessary to check the 
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Z-buffer to determine whether it is full, step 613. If the 
ActiveLayers register value is equal to the maximum layer 
(e.g., 8). this indicates that the Z-buffer is full. A determi 
nation is then made as to whether the object in layer 8 is 
opaque, step 614. If so, then ZIn is discarded, step 612. 
Otherwise, an overflow condition is asserted, step 615. If, 
however, the value in the ActiveLayers register is not equal 
to the maximum layer, ZIn is compared with the other Z 
values in the RAM. The read address for the next layer is 
determined by reading the LayerPointer register. ZIn is 
compared with the Z value read from the RAM using the 
new read address, step 616. Step 604 is then repeated. 
Thus, a computer graphics system having a high perfor 

mance multiple layer Z-buffer is disclosed. 
What is claimed is: 
1. In a computer system, a method of maintaining for 

subsequent display Z-buffered data comprising the steps of: 
generating data describing objects for display; 
storing said data in a multiple layer Z-buffer, wherein each 

layer of said Z-buffer corresponds to a relative depth of 
display of one of said objects, wherein objects having 
lower Z-values are in front of objects having higher 
Z-values; 

storing a plurality of pointers in a first register, each 
pointer corresponding to a layer and specifying an 
address where data corresponding to the layer is stored; 
and 

determining an insert layer where data of an incoming 
object is to be inserted, said input layer determined 
dependent upon the Z-value of the incoming object, 
wherein said addresses of the pointers stored in said 
first register are selectively updated to reflect insertion 
of said data of said incoming object; 

storing a number indicating how many of said layers 
contain visible data in a second register according to a 
Z value and an opaqueness of said incoming object 
relative to Z values and opaqueness of objects already 
stored in said Z-buffer. 

2. The method of claim 1, wherein said incoming object 
has an opaqueness and a Z-value, and wherein said insert 
layer is determined according to said opaqueness and said 
Z-value in relation with Z values and opaqueness of objects 
already stored in said Z-buffer. 

3. The method of claim 1 wherein said data of said 
incoming object is stored at a location specified by an 
address corresponding to a last one of said plurality of 
layers, and a set of said addresses of said first register are 
shifted right, said set comprising an address of data corre 
sponding to said insert layer and addresses of the pointers 
corresponding to all layers following said insert layer. 

4. The method of claim 3 further comprising the steps of 
shifting said set of pointers using a first set of multiplexers 
coupled to said first register; and 

writing said address of the pointer of the last layer to the 
pointer of said insert layer by utilizing a second set of 
multiplexers. 

5. The method of claim 1 further comprising the step of 
determining whether a back most object is opaque, wherein 
if said backmost object is opaque and said data correspond 
ing to said incoming object has a greater Z value than that 
of said backmost object then said data of said incoming 
object is not written to said Z-buffer. 

6. The computer system of claim 1 further comprising a 
means for determining whether said incoming object is 
opaque and whether said incoming object is in front of any 
of said objects already stored in said Z-buffer, wherein if 
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said incoming object is opaque, any of said objects already 
stored in said Z-buffer are identified as no longer being 
needed. 

7. The method of claim 1, wherein said Z-buffer stores a 
a portion of an entire image to be displayed. 

8. The method of claim 1, wherein said Z-buffer com 
prises a scanline Z-buffer. 

9. The method of claim 1, wherein said data of said 
incoming object includes a signal indicating whether said 
incoming object is frontfacing. 

10. The method of claim 1 further comprising the step of 
detecting an overflow condition, wherein all of said layers 
contain visible objects and data of said incoming object is 
received, said overflow condition occurs when all of said 
plurality of layers contain visible objects and data of said 
incoming object is received and said incoming object is 
visible. 

11. The method of claim 1, wherein said Z-buffer com 
prises eight layers. 

12. A computer system comprising: 
a processor for generating data corresponding to a plu 

rality of objects for display; 
a Z-buffer, being coupled to said processor, for storing 

said data in a plurality of memory locations, said 
Z-buffer supporting a plurality of layers, each layer of 
said plurality of layers corresponding to a relative 
display depth; 

a first memory, being coupled to said Z-buffer, for storing 
a plurality of pointers, each pointer comprising an 
address corresponding to a memory location of said 
plurality of memory locations; 

a circuit, being coupled to said first memory, for deter 
mining into which layer of said plurality of layers an 
object of a plurality of objects is to be inserted, each 
object of said plurality of objects being associated with 
a Z-value, an insertion of said object causing a selective 
update of the addresses of the pointers to indicate that 
said object is in front of a second object if said second 
object has a Z-value greater than said first object; and 

a second memory for storing a number indicating how 
many of said layers contain visible data in said 
Z-buffer, said visible data corresponding to a frontmost 
opaque object in said Z-buffer and to non-opaque 
objects in said Z-buffer that are in front of said front 
most opaque object. 

13. The computer system of claim 12 wherein said first 
memory includes a shift register, each address of said 
plurality of pointers corresponds to a predetermined number 
of bits, wherein said plurality of addresses are stored con 
tiguously in said shift register. 

14. The computer system of claim 13, wherein said circuit 
is for assigning a first object received from said processor to 
an insert layer, said insert layer being determined by a 
Z-value corresponding to said first object, and said insert 
layer corresponding to a last layer of said plurality of layers, 
said shift register is for shifting a set of addresses of said 
plurality of addresses to the right, said set of addresses 
comprising an address corresponding to the pointer of the 
insert layer and addresses corresponding to the pointers of 
the layers following said insert layer. 

15. The computer system of claim 12 further comprising 
a means for determining whether an incoming object is 
opaque and whether said incoming object is in front of any 
of said plurality of objects already stored in said Z-buffer, 
wherein if said incoming object is opaque, any of said 
plurality objects that are behind said incoming object 
already stored in said Z-buffer do not effect said pixel data. 



5,920,687 
13 

16. The computer system of claim 12 further comprising 
a means for determining whether a backmost object is 
opaque, wherein if said backmost object is opaque and said 
data corresponding to said incoming object has a greater Z. 
value than that of said backmost object, said data of said 
incoming object is not written to said Z-buffer. 

17. The computer system of claim 12, further comprising 
a frame buffer, being coupled to said Z-buffer, for storing 
pixel data corresponding to data stored in said Z-buffer, and 

a display, being coupled to said frame buffer, and having 
an input for receiving said pixel data, wherein said 
Z-buffer stores a portion of an entire image that is to be 
displayed. 

18. The computer system of claim 12, further comprising 
a frame buffer, being coupled to said Z-buffer, for storing 
pixel data corresponding to data stored in said Z-buffer, and 
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a display, being coupled to said frame buffer, and having 

an input for receiving said pixel data, wherein said 
Z-buffer comprises a scanline buffer. 

19. The computer system of claim 12, wherein said data 
of said incoming object includes a signal indicating whether 
said incoming object is frontfacing. 

20. The computer system of claim 12 further comprising 
an overflow circuit for detecting and indicating an overflow 
condition in said Z-buffer, said overflow condition occurring 
when all of said plurality of layers contain visible objects 
and data of an incoming object is received and said incoming 
object is visible. 

21. The computer system of claim 12, wherein said 
Z-buffer supports eight layers. 

:: * : *k sk 


