
United States Patent 19
Winner et al.

54 Z-BUFFER STORAGE BASED ON OPACITY
AND DEPTH USING POINTERS

75 Inventors: Stephanie L. Winner, Santa Clara;
Michael W. Kelley, San Mateo, both of
Calif.

73) Assignee: Apple Computer, Inc., Cupertino,
Calif.

(21) Appl. No.: 08/479,827
22 Filed: Jun. 7, 1995

Related U.S. Application Data

63) Continuation of application No. 08/060,299, May 10, 1993,
abandoned.

(51) Int. Cl. GO6T 17/20
52 U.S. Cl. .. 395/122
58) Field of Search 395/122, 157,

395/121; 34.5/120, 139

56) References Cited

U.S. PATENT DOCUMENTS

3,648,250 3/1972 Low et al. 34.5/20
4,475,104 10/1984. Shen........ ... 395/122
4,594,673 6/1986 Holly 395/121
4,658.247 4/1987 Gharachodoo. ... 345/196
4.679,041 7/1987 Fetter et al. ... 345/139
4,697,178 9/1987 Heckel ... 395/122
4,815,009 3/1989 Blatin 395/129
4,866,637 9/1989 Gonzalez-Lopez et al. ... 395/126
4,885,703 12/1989 Deering 395/122

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

527587 2/1993 European Pat. Off..
OTHER PUBLICATIONS

Horowitz et al., Fundamentals of Data Structures in Pascal,
1984, pp. 30–39, 334-339.
Hayes, Computer Architecture & Organization, 1978, pp.
99-101.

|||||
USO05920687A

11 Patent Number: 5,920,687
45 Date of Patent: Jul. 6, 1999

Potmesil, The Pixel Machine. Computer Graphics, Jul.
1989, pp. 69-78.
Molnar, PixelFlow: High Speed Rendering Using Image
Composition, Computer Graphics. Jul. 1992, pp. 231-240.

Madarasmi et al., Multi Layer Surface Segmentation using
Energy Minimization, Computer Vision and Pattern Recon
gition, Jun. 15, 1993, pp. 774–775.
Mammen, Transparency and Antialiasing Algorithms Imple
mented with teh Virtual Pixel Maps Technique. Computer
Graphics, Jul. 1989, pp. 43-55.

(List continued on next page.)

Primary Examiner-Anton W. Fetting
Attorney, Agent, or Firm-Blakely, Sokoloff. Taylor &
Zafman

57

A computer graphics system having a processor for gener
ating objects for display, a multi-layered Z-buffer for storing
data according to their relative depths, the processor also
compositing the data stored in the Z-buffer, a frame buffer
for storing composited data, a display for displaying an
image as a number of pixels responsive to the composited
data in the frame buffer, and two registers for facilitating the
Z-buffering process is disclosed. One of the registers stores
a number indicating how many of the layers in the Z-buffer
contain visible data dependent on opacity of existing
objects. In the other register, a number of addresses corre
sponding to each of the layers of the Z-buffer are stored.
Each address specifies a location where data of one of the
layers is stored. A determination is made as to which layer
data associated with an incoming object is to be inserted.
This determination depends on the contents of the first
register as well as the value of the incoming object relative
to those of objects already stored in the Z-buffer. The
addresses of the second register are arranged to correspond
to the appropriate layers in response to insertion of the
incoming data.

ABSTRACT

21 Claims, 5 Drawing Sheets

5,920,687
Page 2

U.S. PATENT DOCUMENTS

4,897,803 1/1990 Calarco et al. 395/166
4.945,500 7/1990 Deering 395/122
4,954,818 9/1990 Nakane et al.. ... 34.5/120
4,970,499 11/1990 Ryherd et al. 395/122
4,970,636 11/1990 Snodgrass et al. 395/122 X
4,977,518 12/1990 Bonnet et al. 395/133
5,00,651 3/1991 Rehme et al. 395/126
5,027,292 6/1991 Rossignac et al. 395/22
5,043,921 8/1991 Gonzalez-Lopez et al. ... 395/122
5,081,698 1/1992 Kohn 395/122
5,081,700 1/1992 Crozier 395/137 X
5,101,365 3/1992 Westberg et al. 395/122 X
5,115,402 5/1992 Matsushiro et al. 395/14
5,123,085 6/1992 Wells et al. 395/12
5,128,872 7/1992 Malachowsky et al. ... 395/162
5,157,388 10/1992 Kohn 34.5/136

... 395/122 5,159,663 10/1992 Wake
5,214,753 5/1993 Lee et al. 395/125
5.222,204 6/1993 Swanson 395/127
5.249,264 9/1993 Matsumoto 395/122 X

... 395/22
... 395/152
... 395/22
... 395/509
... 395/26
... 395/800
... 395/122
... 395/50

5,253,335 10/1993 Mochizuki et al.
5.261,041 11/1993 Susman
5,268,995 12/1993 Diefendorff et al.
5,274,760 12/1993 Schneider ...
5,278,949 1/1994 Thayer
5,313,586 5/1994 Rutman .
5,377,313 12/1994 Scheibl.
5,394,523 2/1995 Harris.............
5,402,532 3/1995 Epstein et al. 395/122
5,428,716 6/1995 Brokenshire et al. 395/122 X
5.490.238 2/1996 Watkins 395/122
5,497,453 3/1996 Megahed et al. 395/22

OTHER PUBLICATIONS

Saito et al. NC Machining with G-Buffer Method, Com
puter Graphics, Jul. 1991, pp. 207-216.
Watanabe et al., A Trigonal Prism-Based Method for Hair
Image Generation, IEEE Computer Graphics and Applica
tions, Jan. 1992, pp. 47-53.

Mammen, Transparency and Antialiasing Algorithms Imple
mented with Virtual Pixel Maps Technique. IEEE Computer
Graphics & Applications. Jul. 1989, pp. 43-55.
Foley et al. Computer Graphics: Principles and Practice,
1990, pp. 882-883.
Horowitz et al., Fundamentals of Data Structures in Pascal,
1982, pp. 335-338.
Salesin, D. and Stolfi, J. "Rendering CSG Models with a
ZZ-Buffer" in: Computer Graphics, vol. 24, No. 4. (Aug.
1990) pp. 67–76.
"Computer Graphics Principles and Practice Second Edi
tion", by Foley, Van Dam. Feiner and Huges, Published by
the Addision Wesley Publishing Corp., pp. 885-886 and pp.
899-900. Date-1990,

"Pyramidal Parametrics", by Lance Williams. Computer
Graphics vol. 17 No. 3. Jul. 1983.
Oka, Masaaki, et al., "Real-Time Manipulation of Tex
ture-Mapped Surfaces.” Computer Graphics, vol. 21, No. 4.
pp. 181-188 (Jul 1987).
Deering, Michael, et al., "The Triangle Processor and Nor
mal Vector Shader: A VLSI System for High Performance
Graphics." Computer Graphics, vol. 22, No. 4, pp. 21-30
(Aug. 1988).
Kirk, David, et al., "TheRendering Architecture of the
DN10000VS." Computer Graphics, vol. 24. No. 4 pp.
299-307 (Aug. 1990).
Fuchs. Henry, et al., "Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor
Enhanced-Memories." Computer Graphics, vol. 22. No. 4,
pp. 239–246 (Aug. 1988).
Akeley, Kurt, et al., "High-Performance Polygon Render
ing." Computer Graphics, vol. 22, No. 4, pp. 239-246 (Aug.
1988).

U.S. Patent Jul. 6, 1999 Sheet 1 of 5 5,920,687

Hardware MaSS
Graphics Storage

Display ACCelerator Device
Device 108 107
121

Keyboard
122

CurSOr
Control
123 Displa Frame/ CPU Co

Controller Z-buffers 102 PrOCeSSOr
Hard Copy 110 109
Device
124 m a s m on is is us am me u m an um a u m u a am mo m so un m an as an am on as m in

SOUnd
Recording

and Playback
Device
125

Scanline
Rasterizer

202

203
aRGB
204

FIG. 2

U.S. Patent

before

after

before
after

before

after

before

after

before

after

before

after

before

after

before

after

before
after

Jul. 6, 1999

FIG. 3
ActiveLayers

O

ActiveLayers
1

1

ActiveLayers

1

ActiveLayers

2

ActiveLayers
1

1

ActiveLayers
1

1

ActiveLayers
1

2

ActiveLayers
1

2

ActiveLayers
1

2

Example 1
incoming object

Example 2
incoming object

Example 3
incoming object

302

Example 4
incoming object

Example 5
incoming object

Example 6
incoming object

Example 7
incoming object

Example 8
incoming object

2/30
Example 9

incoming object

2/30

Sheet 2 of 5 5,920,687

LayerO Layer1 • Layer8

301

LayerO Layer 1 Layer8

301

302

LayerO Layer1 Layer8

30

301

Layer0 Layer1 Layer8

2
301 30

303

LayerO Layer1 e o Layer3

301

301

Layer0 Layer1 e o Layer3
2
l

304

305

Layero Layer1 Layer8
2
2

304 305

304

Layer0 Layer1 e o Layer3

La

2
2

304 305

306

E. Layer1 e o Layer8
304 t 306
304

5,920,687 Sheet 3 of 5 Jul. 6, 1999 U.S. Patent

SIÐ ÁæT ?A?OV

U.S. Patent Jul. 6, 1999 Sheet 5 of 5 5,920,687

layer = 0
RAdd = LayerPointer(O)

FIG. 6

WAdd = LayerPointer|7
601

yes ActiveLayers = 0?
602
O

RAMEWAdd)=ZIn
InsertLayer = 0 eS

603 in C Rayag,

= RAMRAdc
and Frontin= 12

617

ActiveLayers = 1

O

ZIn opaque? layer = layer + 1
605 609

ayer=
ActiveLayers?

610
ActiveLayers =

layer + 1 RAMRAdd
606 Opaque?

al ActiveLayers S RAdd = maxlayer? LayerPointerlayer
ActiveLayers = 613 616
ActiveLayers + 1

608
RAMRAdd
opaque?
614

RAMIWAdd = O
ZIn InsertLayer=

layer ZIn not visible Overflow = 1
607 612 615

5,920,687
1.

Z-BUFFER STORAGE BASED ON OPACTY
AND DEPTH USING POINTERS

This is a continuation of application Ser. No. 08/060,299,
filed May 10, 1993, abandoned.

FIELD OF THE INVENTION

The present invention pertains to the field of computer
graphics display systems. More particularly, the present
invention relates to an apparatus and method for a high
performance multiple layer Z-buffer in a computer graphics
display system.

BACKGROUND OF THE INVENTION

One area in which computer systems are finding increased
application is in that of the graphical arts. Technological
advances in the speed, processing power, and memory of
computers coupled with lower costs have made them ideally
suited for use in graphical display systems. Computer gen
erated displays enable users to visualize two and three
dimensional objects. Users can group the information con
tent of a graphical display much more effectively than if the
same information were to be presented in other formats. A
picture is worth a thousand words.

Furthermore, computer graphics also provide a natural
and fluid interaction between the computer and a user.
Changes to a display are input to the computer which then
effectuates those desired changes by modifying the display
accordingly. This process provides a convenient vehicle for
modeling, predicting, and experimenting with various
events. And with the development of high resolution display
screens, increasingly complex geometric objects can be
rendered with greater precision and clarity. Some examples
of computer graphics applications include flight simulators
for training pilots, computer aided design for aiding engi
neers and architects, diagnostic medical scanners for
doctors, animated pictures in movies and video games, etc.

Basically, a computer graphics system can be broken into
three components: a frame buffer, a monitor, and a display
controller. The frame buffer is a digital memory for storing
the image to be displayed as a series of binary values. The
monitor is comprised of a screen having an array of picture
elements, known as pixels. Each pixel represents a dot on the
screen and can be programmed to a particular color or
intensity. Thousands of individual pixels so programmed are
used to represent a displayed image. It is these individual
pixel values which are stored in the frame buffer. A display
controller is an interface used for passing the contents of the
frame buffer to the monitor. The display controller reads the
data from the display buffer and converts it into a video
signal. The video signalis fed to the monitor which displays
the image.
Images are repeatedly rendered into the display over and

over again, with each new frame representing a new position
or shape of the image to be viewed. The image must be
repeatedly sent to the monitor in order to maintain a steady
picture on the screen. Due to the retentiveness of the human
eye, the monitor needs to be refreshed at a minimum of 30
times a second. Otherwise, the display will flicker in a very
annoying and distracting manner. In today's computer
graphics systems, the refresh frequency is typically around
72 hertz (i.e., 72 times a second). A faster refresh rate
produces less flicker. Hence, the duration for displaying an
image is relatively small, approximately /2 of a second or
14 milliseconds. Given these restraints, it is imperative to
speed up the graphics drawing process to avoid sluggish

O

15

20

25

30

35

40

45

50

55

65

2
response times and jerky movements of displayed images.
Moreover, the faster an image can be drawn, the more
information which can be provided to the display. This
results in smoother, more dynamic, and crisper images.

Typically, a three-dimensional graphics rendering device
that renders images into the frame buffer also stores addi
tional information per pixel (e.g., Alpha, Z. etc.), which is
not required by the frame buffer itself. Alpha values repre
sent a blending function. Z values represent a pixel’s dis
tance from the viewer. Typically, small Z values indicate that
the object is close to the observer, whereas large Z values
indicate that the object is further away. This additional Z.
storage per pixel is typically referred to as a Z-buffer.
By implementing a Z-buffer, usually in the form of

DRAMs, Z values can be stored. The Z-buffer contains
distance information which is used in indicating whether one
object is displayed in front of or behind another object. In
most conventional Z-buffers, a Z-sort operation is performed
by comparing the Z value of incoming data with the Z value
of pre-existing data. If the incoming data is closer (i.e., it has
a smaller Z value), the incoming color data replaces the
pre-existing data in the frame buffer, and the old Z value is
replaced by the new Z value. Otherwise, the incoming data
is discarded. When there is no more incoming data, the
Z-sort is complete, and the contents of each frame buffer?
Z-buffer location represents the final color/intensity for that
particular pixel.
The Z-sort operation is rather straightforward if all of the

objects represented by the data are opaque. However, if the
object in the buffer is not opaque, it is necessary to retain
information about the data which is discarded in order to
determine the final color intensity of a pixel. To avoid the
loss of the data, many Z-buffer systems require that all of the
non-opaque data be rendered after all opaque data has been
rendered and that the non-opaque data be rendered in Z
sorted order (e.g., closest to furthest). Any non-opaque
objects which are behind the opaque object in the buffer are
discarded. The remaining non-opaque objects are compos
ited with the data in the frame buffer and the result is stored
in the frame buffer so that no requisite information is lost.
Since the compositing operation must be performed in a
specific Zorder, the non-opaque objects must be arranged by
Z-depth (i.e., either closest to furthest or furthest to closest)
before being compared with the Z value of the data in the
buffer,

Unfortunately, this method of rendering non-opaque
objects has a number of shortcomings. Sorting the non
opaque objects by Z value is computationally expensive.
Also, this method does not render interpenetrating non
opaque objects correctly; these must be explicitly tested for,
and specially processed, further increasing computation.
Consequently, performing the Z sort process reduces the
amount of time left to actually draw the images which
detrimentally impacts the overall display process.

Other systems have been proposed to solve the problem of
rendering non-opaque objects which avoid these shortcom
ings. These systems usually store more than one Z and color
value per pixel, allowing some number of the closest non
opaque objects to be saved, and then composited later.
However, these systems require a greatly increased number
of Z-bufferRAM accesses necessary to maintain and sort the
multiple Z values per pixel. This increases the bandwidth
requirements of the Z-buffer memory, reducing performance
and/or increasing cost. However, an advantage of this
method is that it defers compositing until after the per pixel
Z sort is complete, which improves performance by avoid

5,920,687
3

ing unneccessary compositing of objects which are later
obscured by a closer object.

Therefore, there is a need in prior art computer graphics
systems for an apparatus or method which is capable of
minimizing the time required to perform Z operations. It
would be preferrable if such an apparatus or method could
defer compositing until after Z sort is completed without
losing the data necessary for compositing non-opaque
objects. It would also be highly preferable if such a mecha
nism could minimize the number of DRAM accesses.

SUMMARY AND OBJECTS OPTHE
INVENTION

The present invention can be applied to computer graph
ics systems. A multiple layer Z-buffer containing Z values
for each of the pixels is controlled according to the values in
two registers which are instanced for each pixel. One
register, referred to as the ActiveLayers register, contains a
value indicating how many of the layers are occupied with
potentially visible object data. The other register, referred to
as the LayerPointer register, contains pointer values indi
cating the memory location to which the data for each layer
is stored.

After one frame has completely rendered, the ActiveLay
ers register is initialized to 0. The first incoming object
increments the ActiveLayers register. If a subsequent incom
ing object falls behind an opaque object it is discarded,
regardless of whether it is opaque or not. If the subsequent
incoming object is opaque (and is not hidden), the Active
Layers register is decremented once for each pre-existing
object which becomes hidden behind the incoming opaque
object. The ActiveLayers register is then incremented to
reflect the incoming opaque object. Otherwise, if a subse
quent incoming object is non-opaque (and is nothidden), the
ActiveLayers register is incremented.
The LayerPointer register contains a number of pointers

equal to the number of layers being implemented. Each
pointer specifies a unique address. If an incoming object is
hidden behind a pre-existing opaque object, the incoming
object is discarded, and the LayerPointer register remains
unchanged. Otherwise, the layer wherein the incoming
object should be inserted is determined. This determination
is based on the incoming object's Z values relative to those
Z values already existing in the buffer. The opacity of the
incoming object affects the ActiveLayers register. The data
of the incoming object is written to the address specified by
a pointer. The pointers are then adjusted accordingly.

In the currently preferred embodiment, the incoming data
is written to the address specified by the pointer correspond
ing to the last layer. The InsertLayer for the incoming data
is determined. The pointer from the last layer is inserted in
the InsertLayer. All the pointers of those layers following
that of the InsertLayer is shifted one place to the right. The
pointers to the left of the InsertLayer remains unchanged.
Manipulating the values in the ActiveLayers and Layer
Pointer registers optimizes the Z-buffering process.

BRIEF DESCRIPTION OF THE DRAWENGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 illustrates a computer system upon which the
preferred embodiment of the present invention can be imple
mented.

O

15

25

30

35

45

50

55

65

4
FIG. 2 is a block diagram showing a graphics system

utilizing scanline Z-buffering.
FIG. 3 shows the various different combinations of how

incoming opaque and non-opaque objects are handled.
FIG. 4 shows an example of how the ActiveLayers and

LayerPointer registers of the present invention operate for
six consecutive incoming objects.

FIG. 5 is a circuit diagram illustrating one mechanism for
maintaining the LayerPointer register.

FIG. 6 is a flowchart showing the operations performed
during the Z-sort,

DETALED DESCRIPTION

A high performance multiple layer Z-buffer in a computer
graphics system is described. In the following description.
for the purpose of explanation, numerous specific details
such as registers, bit lengths, number of layers, etc., are set
forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, to one
skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known
structures and devices are shown in block diagram form in
order to avoid unnecessarily obscuring the present inven
tion.

Referring to FIG. 1, a computer system upon which the
preferred embodiment of the present invention can be imple
mented is shown as 100. Computer system 100 comprises a
bus 101 for the internal transmission of digital data. A
central processing unit 102 for processing digital data is
coupled with bus 101 for processing information.
Furthermore, a number of co-processors 103 can be coupled
onto bus 101 for additional processing power and speed.
Computer system 100 further comprises a random access

memory (RAM) 104 (referred to as main memory) which is
also coupled to bus 101. Main memory 104 is used in storing
information and instructions which are executed by proces
sor 102. Main memory 104 also may be used for storing
temporary variables or other intermediate information dur
ing execution of instructions by CPU 102. Computer system
100 also comprises a read only memory (ROM) or some
other type of static storage device 106. ROM 106 is coupled
to bus 101 and is used to store static information and
instructions for processor 102. A data storage device 107
(e.g., a hard disk drive, floppy disk drive, etc.) drive can be
coupled to bus 101 for storing information and instructions.
Also coupled to bus 101 is hardware graphics accelerator

108, frameZ-buffers 109, and display controller 110. Hard
ware graphics accelerator 108 is designed to accelerate
interactive 3D graphics software extensions. It comprises an
ASIC, a static RAM cache, and texture mapping RAM.
Accelerator 108 outputs a high bandwidth pixel stream to
frame/Z-buffer 109. Simultaneously, the host CPU 102
generates the signal containing the primitives which are
input to and rendered by accelerator 108. Display controller
110 interfaces computer system 100 to a display device 121.
One example of a display device 121 is a cathode ray tube

(CRT) used for displaying information to a computer user.
An alphanumeric input device 122, such as a keyboard, may
also be coupled to bus 101, as well as a cursor control device
123. A cursor control device 123 is used for controlling
cursor movement on display device 121. This input device
typically has two degrees of freedomin two axes, a first axis
(e.g., x) and a second axis (e.g., y) which allows the device
to specify any position in a plane. In the present invention,
a three-dimensional cursor having a third degree of freedom

5,920,687
5

in a Z-axis is utilized. Some examples of a cursor control
device 123 include a mouse, joystick, trackball, touch pad,
etc.

The present invention can be applied equally to conven
tional screen Z-buffering as well as scanline Z-buffering
techniques. In screen Z-buffering, the state information
necessary for rendering a pixel is stored for every pixel on
the screen. Each object to be rendered is transformed and
rasterized independently. Conventional screen Z-buffering
techniques often involve very high bandwidths plus large
quantities of fast memory and are often coupled with sophis
ticated caching and prefetching mechanisms. In comparison,
scanline Z-buffering presorts the object database in screen
space and renders each scanline individually. One scanline
of pixel state information is kept.

FIG. 2 is a block diagram showing a graphics system
utilizing scanline Z-buffering. The host CPU 201 is used for
transformation, shading, and active list maintenance. Scan
line rasterizer 202 performs shading and hidden surface
removal via a Z-buffer 203, shadow volumes, and alpha
blending 204. The rasterizer 202 intersects polygons trans
ferred from the active polygon list with the scanline and
generates a series of horizontal spans. The resulting spans
are rasterized. Furthermore, hidden surface removal, shadow
plane tests, and alpha blending are performed. Rendering
begins when the CPU 201 traverses the 3D database and
generates transformed, projected, dipped, and shaded poly
gons. The polygons are bucket sorted by the number of the
first scanline on which they first become active. Once the
main database traversal is complete, the host traverses the
bucket sorted list in screen Y order, maintaining an active
polygon list which is transferred into the rasterizer 202 for
rendering into RGB frame buffer 205.
Z values are represented as a floating point number with

a 23-bit fractional normalized mantissa and an 8-bit expo
nent. There is also a one bit tag which is asserted if the object
is frontfacing. If during the comparison the two Z values are
equal. it is necessary to determine if incoming object is
frontfacing. There is a flag in the object data which is
designed for this purpose. If the incoming object is front
facing it is considered to be in front of the object which is
in the buffer. In the present invention, the Z-buffer is
comprised of multiple layers and multiple pixels for han
dling opaque as well as non-opaque objects. Although any
number of layers and pixels can be implemented with the
present invention, eight layers and eight pixels are utilized
in the currently preferred embodiment.
The Z value of incoming data for a particular pixel is

compared with each layer in the buffer until it is determined
where or whetherit should be placed in the buffer. There are
two registers, an ActiveLayers register and a LayerPointer
register associated with each pixel for optimizing the sorting
process. The ActiveLayers register indicates how many of
the layers are occupied with potentially visible object data.
Because non-opaque objects are supported, it is not known
whether an object is visible until after the compositing
operation is completed. The LayerPointer register indicates
in which memory location the data for each layer is to be
stored.
The operation of these two registers are now described in

detail. The Active layers register is first initialized to zero.
When the first object is received it is written into the layer
of the Z-buffer as indicated by the ActiveLayers register.
Since the ActiveLayers register had been initialized to zero,
the first object is thereby written to Layer 0, the ActiveLay
ers register is incremented by one. When a successive

10

15

30

35

45

50

55

65

6
incoming object is received its value is compared with the Z
value of the object in layer 0. The opacity of the incoming
object only affects the ActiveLayers register and not the
LayerPointer register nor the Z-buffer. Whether the incom
ing object is written is determined by the opacity of objects
in the buffer and overflow. Its write location is determined by
the relative Z values.

FIG. 3 shows the various different combinations of how
incoming opaque and non-opaque objects are handled.
Examples of each possible combination are given illustrat
ing how the objects are assigned to the different layers along
with the corresponding changes made to the ActiveLayers
register. In example 1, the ActiveLayers register is initialized
to a value of zero after completion of rendering. Whenever
an incoming object 301 is received, it is written into the layer
designated by the ActiveLayers register. In example 1, the
first object is opaque and is written into layer 0. The
ActiveLayer register is then incremented by one (i.e. incre
mented from 0 to 1). In example 2. a second incoming object
302 is received. Object 302 is opaque and has a smaller Z
value than object 301 (i.e., object 302 is closer to the
viewport than object301). The incoming data corresponding
to object 302 is written to layer 0. The contents of the
ActiveLayers register remains unchanged (i.e., it remains set
at 1). Note that the data corresponding to object 301 has been
effectively overwritten. It still exists in the Z-buffer RAM;
only the LayerPointer register changes. Hence, if the incom
ing object falls behind a pre-existing opaque object, the
incoming object is "hidden" behind the opaque object and
can thereby be discarded.

Example 3 illustrates the events occurring if the second
incoming object 302 has a greater Z value than object 301
which resides in layer 0. Since object302 is "hidden" behind
opaque object 301, its incoming value can be safely dis
carded. Everything else remains the same. In example 4, the
incoming object 303 is non-opaque and has a smaller Z.
value. Hence, the data corresponding to object 301 is moved
so as to correspond to layer 1, and the incoming data is
written to layer 0. The ActiveLayers register is incremented
to 2. In example 5, the incoming non-opaque object has a
larger Zvalue. Consequently, its incoming data is discarded.

Referring to examples 6-9, the pre-existing object 304 is
non-opaque. In example 6, an incoming object 305 is opaque
and has a smaller Z value. Hence, the incoming data is
written to layer 0 and the data associated with object 304 is
discarded. If the incoming opaque object 305 has a larger Z.
value, its data corresponds to layer 1; the ActiveLayers
register is incremented to 2; and the data corresponding to
object 304 remains stored in layer 1, depicted in example 7.

Example 8 illustrates the events which occur when the
incoming object is non-opaque and has a smaller Z value.
Under such circumstances, the data corresponding to pre
existing object 304 is moved to layer 1; the incoming data
is written to layer 0, and the ActiveLayers register is
incremented by one to 2. In example 9, the incoming
non-opaque object 306 has a larger Z value. Consequently,
the incoming data is changed to correspond to layer 1 and
the ActiveLayers register is incremented to 2. Table 1 below
lists the eight different possible scenarios associated with an
incoming object.

5,920,687
7

TABLE 1.

Pre-existing Z Walue of
Object in Incoming Incoming ActiveLayers
Layer 0 Object Object Layer 0 Layer 1 Register

Opaque Opaque Smaller Object non- 1.
Opaque Opaque Larger Object 1.
Opaque Non-opaque Smaller Object Object, 2
Opaque Non-opaque Larger Object 1.
Non-opaque Opaque Smaller Object 1.
Non-opaque Opaque Larger Object Object 2
Non-opaque Non-opaque Smaller Object Object, 2
Non-opaque Non-opaque Larger Object Object 2

By implementing an ActiveLayers register, only those
layers which contain potentially visible objects are com
pared during the sort operation. Note that without using an
ActiveLayers register or its equivalent, incoming data would
be required to be checked against all eight layers. Reading
and writing the object data is costly in terms of speed since
it requires accessing the Z-buffer DRAM. Note that typical
prior art Z-buffers only have one layer, two at the most, so
only one or two reads are required to complete the sort
operation. Multiple layers complicate the Z-sort operation,
but are necessary to defer the compositing operation and to
eliminate the need for ordering the non-opaque data.
The ActiveLayers register also simplifies the removal of

obstructed objects from the Z-buffer. If any object falls
behind an opaque object, it must be removed from the buffer
which requires that the RAM be written. Instead of writing
the RAM, the value in the ActiveLayers register is adjusted
to reflect the new condition.

Furthermore, an ActiveLayers register saves time by
eliminating the need to initialize each of the eight layers to
the maximum Z value (i.e., infinity). Rather, after each frame
has been completely rendered, the ActiveLayers register is
reset to zero. In typical prior art Z-buffers, all of the Z values
would have to be written to the maximum value and to a
transparent object data.

In addition to the ActiveLayers register, a second, Lay
erPointer register, is implemented to minimize Z-buffer
DRAM accesses. The LayerPointer register contains a num
ber of pointers equal to the number of layers being utilized.
In the currently preferred embodiment, eight 3-bit pointers
are utilized. A pointer specifies a unique address of an
object's data corresponding to each of the eight layers. The
first pointer corresponds to layer 0. The second pointer
corresponds to layer 1. Each successive pointer corresponds
to each successive layer, up to layer 7.
By utilizing these pointers in the LayerPointer register,

the movement of an object from one layer to another can
essentially be simulated without actually reading from and
writing to the Z-buffer. The present invention does not
require reading the data of the pre-existing object, writing it
into another layer, and then writing the incoming object's
data into the first layer. Instead, the present invention
accomplishes the same result by manipulating pointer val
ues. In the currently preferred embodiment, the lowest
pointer (i.e., the one corresponding to layer 7) is used to
specify the address of an incoming object being written into
the Z-buffer. In other words, the incoming data is written to
the address specified by the pointer corresponding to layer 7.

FIG. 4 shows an example of how the ActiveLayers and
LayerPointer registers of the present invention operate for
six consecutive incoming objects. Once the rendering of a
frame has been completed, the ActiveLayers register is

15

20

25

30

35

45

50

55

65

8
initialized to 0 and the LayerPointer register is set so that
each pointer specifies a unique address. Note that the point
ers need not be specified in any sequential order, but each
pointer must specify a unique address. In the example, the
eight 3-bit pointers are initialized to the following addresses:
7, 6, 5, 4, 3, 1, and 0 corresponding to layers 0-7, respec
tively.
The first incoming object 401 is opaque and has a Z value

of 15. The pointer corresponding to layer 7 specifies an
address of 0. Since it is the first object, the data should be
inserted in layer 0. The ActiveLayers register is incre
mented. A barrel shift-right by one place is performed on
layers 0-7 of the LayerPointer register. Hence, the Active
Layers register becomes 1. and the contents of the Layer
Pointer register becomes 0, 7, 6, 5, 4.3. 2, and 1. Note that
the incoming data stored in address 0 now appropriately
resides in layer 0.
A second incoming object 402 is opaque and has a Z value

of 10. Its data is written to the address specified by the
pointer of layer 7. In this case, the data is written to address
1. The Z values of object 402 is compared with that of object
401. Since object 402 is opaque and has a smaller Z value
than object 401, object 401 is hidden behind object 402.
Consequently, the incoming data should be inserted in layer
0. The ActiveLayers register remains unchanged. A barrel
shift-right is performed on layers 0-7 of the LayerPointer
register, such that it becomes 1, 0, 7, 6, 5, 4, 3, and 2. Note
that the pointer of layer 0 correctly specifies the address
containing the data of object 402. Note also that the data of
object 401 still resides in address 0, but since the Active
Layers register only specifies one layer, this data is rendered
meaningless.
The third incoming object 403 is non-opaque and has a Z

value of 8. The data of object 403 is written to address 2, as
specified by the pointer of layer 7. Object 403 is in front of
object 402 because its Z value of 8 is less than the Z value
of 10 for object 402. Consequently, the incoming data
should be inserted in layer 0. Since object 403 is non
opaque, the data corresponding to object 402 must still be
maintained. Thus, ActiveLayers register is incremented. A
barrel shift-right operation is performed for layers 0-7 of the
PointerLayer register. The LayerPointer register now reads
2. 1, 0, 7, 6, 5, 4, and 3. The result is that the ActiveLayers
register specifies two layers (i.e., layers 0 and 1). The pointer
in layer 0 correctly specifies address 2, which contains the
data for object 403, and the pointer in layer 1 specifies an
address of 1, which contains the data for object 402.
A fourth incoming object 404 is non-opaque and has a Z

value of 9. The pointer of layer 7 specifies an address of 3.
The incoming data is written to that address. Since the Z
value of object 403KZ value of object 404<Z value of object
402, the data of object 404 should be inserted in layer 1,
in-between objects 403 and 402. The data of object 402
should be altered to correspond to layer 2 while that of
object 403 should remain layer 0. This is effectuated by
performing a barrel shift-right operation only for levels 1-7.
The resulting contents of the LayerPointer register is 2, 3, 1.
0, 7, 6, 5, and 4. The ActiveLayers register is incremented.
Thus, the pointers of the first three layers specify addresses
2, 3, and 1 which respectively correspond to that of objects
403, 404, and 402.
The fifth incoming object 405 is non-opaque and has a Z

value of 11. Since it falls behind the opaque object 402, the
incoming data is discarded. No changes are made to either
the ActiveLayers or LayerPointer register.
The sixth incoming object 406 is opaque and has a Z value

of 5. Object 406 falls in front of and hides all the pre-existing

5,920,687
9

objects 402–404. The incoming data is written to address 4
and is inserted to layer 0. Abarrel shift-right is performed for
layers 0-7 of the LayerPointer register, so that it reads 4, 2,
3, 1, 0, 7, 6, and 5. Furthermore, the ActiveLayers register
is reset to 1. It should be pointed out that modifying the
ActiveLayers and LayerPointer registers is much quicker
than accessing the DRAM to write the maximum Z value
and the transparent alpha value as the registers occupy far
fewer bits.

In one embodiment, the incoming object is checked to
determine whether it falls behind the backmost object of the
Z-buffer. If it falls behind the backmost object and that
object is opaque, the incoming data is discarded. If the
backmost object is not opaque, the incoming data is placed
behind it, and the ActiveLayers and LayerPointer registers
are modified accordingly. In this embodiment, only one
comparison is needed to determine whether the incoming
data should be discarded.

FIG. 5 is a circuit diagram illustrating one mechanism for
maintaining the LayerPointer register 500. Once the layer
wherein an incoming object's data is to be inserted (i.e., the
InsertLayer) is determined, the Rotate and Insert signals are
generated according to Table 2 below.

TABLE 2

Insert
Layer Rotate insert

O 0xF Ox 80
Ox3F Ox 40

2 Ox1F Ox2O
3 Ox OF Ox O
4. Ox O. Ox08
5 Ox 03 OXO4
6 OXO1 Ox O2
7 Ox OO OXO1

The upper multiplexers 501-508 are used to rotate the
pointers, especially for those situations wherein the incom
ing object is placed in front of other pre-existing objects in
the Z-buffer. The rotate operation is performed by a barrel
shift-right. The barrel shift-right is executed according to the
8-bit digital Rotate signal on line 521. Each of the eight bits
controls each of the eight multiplexers 501-508. In other
words, control bit 0 of the Rotate signal controls multiplexer
501; bit 1 controls multiplexer 502; etc. The control bit
selects which of the two inputs to a multiplexer is to be
output. Note that LayerPointer register 500 has eight layers
and three bits per layer, for a total of 24 bits. Each multi
plexer has two 3-bit inputs supplied by the LayerPointer
register. If the control bit is a 0, the three bits corresponding
to a particular pointer is selected for output on line 523.
Conversely, if the control bit is a 1, the three successive next
significant bits are selected for output on line 524. For
example, if control bit 0 is a 0, bits 0-2 of the LayerPointer
register 500, is selected for output by multiplexer 501. If
control bit 0 happens to be a 1, bits 3-5 are selected for
output by multiplexer 501.
The lower multiplexers 511-518 are used to move the

pointer associated with layer 7 prior to receipt of incoming
data, to the layer which the incoming object data is to be
inserted. The insert operation is performed according to the
8-bit digital Insert signal on line 522. Each of the eight
control bits of the Insert signal controls one of the eight
multiplexers 511-518. A control bit selects for output one of
the two input signals to a multiplexer. One input signal is a
3-bit output from one of the upper multiplexers. The other
input signal is the three least significant bits of the Layer

O

15

25

30

35

45

50

55

65

10
Pointer register 500 (i.e., bits 0-2 which correspond to the
pointer of layer 7). For example, if control bit 0 of the Insert
signal is a 0, multiplexer 511 selects the 3-bit output from
multiplexer 501 for output on line 524. If control bit 0 were
a 1, multiplexer 511 selects bits 0-2 of the LayerPointer
register 500 for output on line 524.
The operation of this LayerPointer circuit is now

described in reference to the incoming objects depicted in
FIG. 4 and described above. A reset signal on line 525
initializes the LayerPointer register 500 to a value of 7. 6.5.
4.3.2, 1, and 0=111110101100011010001000. When data
corresponding to object 401 is received, its InsertLayer is
determined to be 0. Consulting Table 2, an InsertLayer of 0
translates into a Rotate signal of Ox7F=01111111, and the
Insert signal is 0x80=10000000. According to the Rotate
signal, multiplexer 501 selects bits 3-5 for output; multi
plexer 502 selects bits 6-8; multiplexer 503 selects bits
9-11; multiplexer 504 selects bits 12-14; multiplexer 505
selects bits 15-17; multiplexer 506 selects bits 18-20;
multiplexer 507 selects bits 21-23; and multiplexer 508
selects bits 21-23. And according to the Insert signal,
multiplexers 511-517 select the outputs of multiplexers
501-507 respectively; multiplexer 518 selects bits 0-2 for
output. The result is that the pointers for layers 0-6 are
shifted to the right. The pointer corresponding to layer 7 is
inserted into layer 0. The resulting contents of the Layer
Pointer register is 000111110101100011010001=0, 7, 6, 5,
4, 3, 2, 1.

FIG. 6 is a flowchart showing the operations performed
during the Z-sort, wherein the contents for the ActiveLayers
and LayerPointer registers are calculated. In the first
operation, step 601, the LayerCounter is initialized to 0; the
RAM read address (RAdd) is initialized to LayerPointer Ol;
and the RAM write address (WAdd) is initialized to Layer
Pointer (7). A determination is then made as to whether the
ActiveLayers register is 0, step 602. If so, the ActiveLayers
register is incremented to 1; the InsertLayer is set to 0; and
ZIn is written into the RAM at the write address. If the
ActiveLayers register is not 0, the Z values for each of the
objects are compared, step 604. If the Z value of the
incoming object is closer than the Z value presently asso
ciated with layer 0, step 605 is performed. Otherwise, step
617 is executed. In step 617, a determination is made as to
whether the Z value of the incoming object is equal to the Z
value presently associated with layer 0 and the Front bit is
set. If so, step 605 is executed. Otherwise, step 609 is
executed.

In step 605, a determination is made as to whether the
incoming object is opaque. If the incoming object is opaque,
the ActiveLayers register is set to the LayerCounter plus 1.
step 606. The InsertLayer is set to the LayerCounter, and ZIn
is written into the RAM at the write address, step 607. If it
is determined that the incoming object is not opaque, the
ActiveLayers register is incremented, step 608. Step 607
wherein the InsertLayer is set to the LayerCounter and the
Zn is written.

In step 609, the LayerCounter is incremented. A determi
nation is made as to whether the LayerCounter is equal to the
ActiveLayers, step 610. If they are equal, this signifies that
there are no more Z values in the RAM for comparison. In
that case, a determination is made as to whether the object
in the last layer is opaque, step 611. If the object in the last
layer is not opaque, step 608 is executed. Otherwise, ZIn is
not visible, and it is discarded, step 612.

If the LayerCounter is not equal to the value in the
ActiveLayers register, it becomes necessary to check the

5,920,687
11

Z-buffer to determine whether it is full, step 613. If the
ActiveLayers register value is equal to the maximum layer
(e.g., 8). this indicates that the Z-buffer is full. A determi
nation is then made as to whether the object in layer 8 is
opaque, step 614. If so, then ZIn is discarded, step 612.
Otherwise, an overflow condition is asserted, step 615. If,
however, the value in the ActiveLayers register is not equal
to the maximum layer, ZIn is compared with the other Z
values in the RAM. The read address for the next layer is
determined by reading the LayerPointer register. ZIn is
compared with the Z value read from the RAM using the
new read address, step 616. Step 604 is then repeated.
Thus, a computer graphics system having a high perfor

mance multiple layer Z-buffer is disclosed.
What is claimed is:
1. In a computer system, a method of maintaining for

subsequent display Z-buffered data comprising the steps of:
generating data describing objects for display;
storing said data in a multiple layer Z-buffer, wherein each

layer of said Z-buffer corresponds to a relative depth of
display of one of said objects, wherein objects having
lower Z-values are in front of objects having higher
Z-values;

storing a plurality of pointers in a first register, each
pointer corresponding to a layer and specifying an
address where data corresponding to the layer is stored;
and

determining an insert layer where data of an incoming
object is to be inserted, said input layer determined
dependent upon the Z-value of the incoming object,
wherein said addresses of the pointers stored in said
first register are selectively updated to reflect insertion
of said data of said incoming object;

storing a number indicating how many of said layers
contain visible data in a second register according to a
Z value and an opaqueness of said incoming object
relative to Z values and opaqueness of objects already
stored in said Z-buffer.

2. The method of claim 1, wherein said incoming object
has an opaqueness and a Z-value, and wherein said insert
layer is determined according to said opaqueness and said
Z-value in relation with Z values and opaqueness of objects
already stored in said Z-buffer.

3. The method of claim 1 wherein said data of said
incoming object is stored at a location specified by an
address corresponding to a last one of said plurality of
layers, and a set of said addresses of said first register are
shifted right, said set comprising an address of data corre
sponding to said insert layer and addresses of the pointers
corresponding to all layers following said insert layer.

4. The method of claim 3 further comprising the steps of
shifting said set of pointers using a first set of multiplexers
coupled to said first register; and

writing said address of the pointer of the last layer to the
pointer of said insert layer by utilizing a second set of
multiplexers.

5. The method of claim 1 further comprising the step of
determining whether a back most object is opaque, wherein
if said backmost object is opaque and said data correspond
ing to said incoming object has a greater Z value than that
of said backmost object then said data of said incoming
object is not written to said Z-buffer.

6. The computer system of claim 1 further comprising a
means for determining whether said incoming object is
opaque and whether said incoming object is in front of any
of said objects already stored in said Z-buffer, wherein if

10

15

25

30

35

45

50

55

65

12
said incoming object is opaque, any of said objects already
stored in said Z-buffer are identified as no longer being
needed.

7. The method of claim 1, wherein said Z-buffer stores a
a portion of an entire image to be displayed.

8. The method of claim 1, wherein said Z-buffer com
prises a scanline Z-buffer.

9. The method of claim 1, wherein said data of said
incoming object includes a signal indicating whether said
incoming object is frontfacing.

10. The method of claim 1 further comprising the step of
detecting an overflow condition, wherein all of said layers
contain visible objects and data of said incoming object is
received, said overflow condition occurs when all of said
plurality of layers contain visible objects and data of said
incoming object is received and said incoming object is
visible.

11. The method of claim 1, wherein said Z-buffer com
prises eight layers.

12. A computer system comprising:
a processor for generating data corresponding to a plu

rality of objects for display;
a Z-buffer, being coupled to said processor, for storing

said data in a plurality of memory locations, said
Z-buffer supporting a plurality of layers, each layer of
said plurality of layers corresponding to a relative
display depth;

a first memory, being coupled to said Z-buffer, for storing
a plurality of pointers, each pointer comprising an
address corresponding to a memory location of said
plurality of memory locations;

a circuit, being coupled to said first memory, for deter
mining into which layer of said plurality of layers an
object of a plurality of objects is to be inserted, each
object of said plurality of objects being associated with
a Z-value, an insertion of said object causing a selective
update of the addresses of the pointers to indicate that
said object is in front of a second object if said second
object has a Z-value greater than said first object; and

a second memory for storing a number indicating how
many of said layers contain visible data in said
Z-buffer, said visible data corresponding to a frontmost
opaque object in said Z-buffer and to non-opaque
objects in said Z-buffer that are in front of said front
most opaque object.

13. The computer system of claim 12 wherein said first
memory includes a shift register, each address of said
plurality of pointers corresponds to a predetermined number
of bits, wherein said plurality of addresses are stored con
tiguously in said shift register.

14. The computer system of claim 13, wherein said circuit
is for assigning a first object received from said processor to
an insert layer, said insert layer being determined by a
Z-value corresponding to said first object, and said insert
layer corresponding to a last layer of said plurality of layers,
said shift register is for shifting a set of addresses of said
plurality of addresses to the right, said set of addresses
comprising an address corresponding to the pointer of the
insert layer and addresses corresponding to the pointers of
the layers following said insert layer.

15. The computer system of claim 12 further comprising
a means for determining whether an incoming object is
opaque and whether said incoming object is in front of any
of said plurality of objects already stored in said Z-buffer,
wherein if said incoming object is opaque, any of said
plurality objects that are behind said incoming object
already stored in said Z-buffer do not effect said pixel data.

5,920,687
13

16. The computer system of claim 12 further comprising
a means for determining whether a backmost object is
opaque, wherein if said backmost object is opaque and said
data corresponding to said incoming object has a greater Z.
value than that of said backmost object, said data of said
incoming object is not written to said Z-buffer.

17. The computer system of claim 12, further comprising
a frame buffer, being coupled to said Z-buffer, for storing
pixel data corresponding to data stored in said Z-buffer, and

a display, being coupled to said frame buffer, and having
an input for receiving said pixel data, wherein said
Z-buffer stores a portion of an entire image that is to be
displayed.

18. The computer system of claim 12, further comprising
a frame buffer, being coupled to said Z-buffer, for storing
pixel data corresponding to data stored in said Z-buffer, and

5

10

15

14
a display, being coupled to said frame buffer, and having

an input for receiving said pixel data, wherein said
Z-buffer comprises a scanline buffer.

19. The computer system of claim 12, wherein said data
of said incoming object includes a signal indicating whether
said incoming object is frontfacing.

20. The computer system of claim 12 further comprising
an overflow circuit for detecting and indicating an overflow
condition in said Z-buffer, said overflow condition occurring
when all of said plurality of layers contain visible objects
and data of an incoming object is received and said incoming
object is visible.

21. The computer system of claim 12, wherein said
Z-buffer supports eight layers.

:: * : *k sk

