
Multithreading:
Taking Advantage of
Intel® Architecture-based
Multiprocessor Workstations

March 1999 Intel Corporation

3

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

Contents

Abstract..5

Introduction ...5
Goals ..5
Background and Terminology ...6

Enablers...8
Processor Hardware Readily Available ..8
Less Expensive Memory ...9
Multithreading–capable OSes and System Software ...9

Applying Multithreading ..10
When to Use Multithreading..10
When Not to Use Multithreading ...10
Examples of Some Techniques ...10
Resources to Build Threaded Applications..13
Warnings, Risks and Remedies ..13

References ..15
On-Line References ..15
Books ...15

List of Figures
Figure 1: Processor Cycles Wasted by Single-threading ...10
Figure 2: Processor Cycles Gained Back by Multithreading ..11
Figure 3: Serial Data Processing ...11
Figure 4: Parallelized Data Processing ..12
Figure 5: Single-threaded Producer/Consumer ...12
Figure 6: Multithreaded Producer/Consumer ..12

List of Tables
Table 1: Resource Sharing Scope...8
Table 2: Principal Threading-related Calls..14

5

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

Abstract

Multithreading is introduced as a way

to take best advantage of the processor

or processors in an Intel® Architecture-

based technical workstation.

Multithreading concepts and terminology

are introduced, and are contrasted with

“multitasking”. Emphasis is placed on

writing applications having single exe-

cutables that run on either single or

multiprocessor systems. Examples and

“rules of thumb” are given of existing

application usage which lend themselves

well to multithreading, as well as situa-

tions where multithreading should not be

applied. The programming interfaces

(calls) which an application can use are

introduced. For additional information

including specific performance tests

comparing uni- and dual processor

Intel® Pentium® III XeonTM workstations,

please go to http://www.intel.com/

go/workstations

Introduction

Today’s operating systems strive and

compete to make most efficient use of a

computer’s resources. While much has

been done to efficiently share a

machine’s resources among several

tasks (multitasking), this “large grained”

resource sharing is the most operating

systems are able to do without additional

information from the applications

themselves. Recent operating systems

provide mechanisms allowing an appli-

cation to control and share machine

resources at a “finer grain” — threads.

This paper discusses how use of threads

on multiprocessor Intel architecture-

based workstations can improve an

application’s performance, responsive-

ness and throughput.

Prior to the introduction of the

Pentium® II processor (and its

architectural predecessor, the Pentium®

Pro processor), technical workstations

featuring more than one processor were

relatively expensive. Usually, these

multi-processor systems were reserved

for applications specially developed for

those machines. As multi-processor

machines have become more available,

OS support for threading has become

standardized, making this technique

available and approachable by all appli-

cation writers. With the introduction of

the Pentium® III and Pentium III Xeon

processors from Intel, workstations

based on the Intel Architecture offer even

more compelling platform for developing

and running multithreaded applications.

While this paper follows existing

technical workstation market trends and

places slightly more emphasis on

Microsoft* Windows NT*, we also discuss

features available from modern UNIX*

operating systems.

Goals

Like most programming techniques, the

primary goal of multithreading is to allow

a user to take best advantage of the

resources of a computer system and its

attached network. This technique is

inspired by observations that — for

much of the time — the majority of the

resources of today’s machines are idle,

and the speeds (throughput, transfer

rate, etc.) of the various parts of the

machine vary widely. Threads express

the work done by individual portions of a

task (process), and allow for finer

grained scheduling. Thus, the goals of

multithreading are improvements in:

■ Resource utilization: Effectively

and consistently use all available

processing power

■ Throughput: Mask delays due to slow

peripheral devices (or other data

producers) by enabling other work to

be done in the mean time

■ Responsiveness: Maintain excellent

GUI responsiveness while other

computation continues

■ Communication: reliable,

responsive cross-process or cross-

net communication

And to do this in a way that assures:

■ Scalability: performance that

improves in proportion to added

compute power

■ Compatibility: same binary for single

and multi-processors

■ Portability: source code for an

application varies minimally from

platform to platform

6

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

Background and
Terminology

Multithreading vs. Multitasking

Loosely speaking, multitasking refers to

running multiple, unrelated jobs on one

system or display unit — for example,

a simulation and an email client.

Multitasking is by definition, “large

grained parallelism”; independent jobs

are executing at the same time. By

contrast, multithreading usually refers to

a single job that is managing multiple,

usually shared resources (memory,

processors, etc.) at a finer grain size

than multi-tasking.

Process as an Address Space

Today’s operating systems model

a running application —

a task or process — as:

■ An address space or work area where

data can be manipulated,

■ The executable code running

within it; and

■ Descriptors for OS and machine

resources used by the process.

The three interact with the OS to do the

work of the task — receiving input data,

transforming it and delivering it to

some consumer or storage area. The

executable code may have to spend

significant amounts of time waiting: for

I/O to complete, for higher priority jobs

to run, for user input, for communication

media, etc. Unless a task is very carefully

written — or the machine is constantly

busy with work for other tasks —

processor and other machine resources

can become idle.

Thread as a “Program Counter”
Within the Process

All of the executable code for a process

is brought into its address space.

Applications usually do their work in

segments or stages — modifying data

for that segment or stage, and recording

or sharing progress by updating global

data. If the segments or stages of work

operate without (or minimally) disturbing

other units of work, each of these

smaller units of work can run in parallel

as threads. Each unit of work has its own

program counter tracking the instruc-

tions being executed, and its own call/

return stack — in essence, its own state.

Definitions

Address Space – a region of (virtual)

memory that is protected from other

address spaces and process on a

machine, in which a task’s executable

instructions and data are stored.

Process – synonym for:

Job – synonym for:

Task – An executing application that

consists of a private virtual address

space, executable code, data, and other

operating system resources, such as

files, pipes, and synchronization objects

that are visible to the process. This

includes call/return stack(s), shared

objects, I/O handles and environment

variables, program counter(s), etc. The

“classic” OS process has one thread of

execution doing its work.

Multitasking – the ability of a machine

and OS to run multiple, independent

processes — conceptually at the same

time — by sharing a machine’s

resources among those processes,

usually by some time-slice strategy.

Symmetric MultiProcessing (SMP) – a

computer system constructed so that

every processor has equivalent, full

access to machine resources - memory,

peripherals, graphics and other con-

trollers. Additionally, any unshared

resources (like L2 cache) have mecha-

nisms to inform all processors of any

need to synchronize content. As a result,

any processor can perform OS work

equivalently well. (This is a slightly more

general definition than a different “SMP”

Shared Memory Parallel Processing.)

Thread – one flow of control through a

program and that flow’s current state

(represented by a current program

counter, a call/return stack and, occa-

sionally, some thread-private data).

A process has one or more threads

doing its work.

Multithreading – having more than one

flow of control within a process, allowing

parts of the process to be independently

performed.

Asynchronous I/O – an “indirect” form

of threading where an application makes

calls to special I/O routines that initiate

an operation and return immediately.

The application may proceed doing

calculations on other data, and is

expected to make a later I/O call which

checks whether the I/O operation has

completed. This programming paradigm

is gradually being displaced by use of

threads (which are more general).

Instead of using special asynchronous

7

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

I/O calls, a thread is used to make

“regular” I/O calls and synchronize upon

completion the same way all other

threads do.

Producer / Consumer – data processing

is often performed as a sequence of

filters, each performing a localized, well-

defined operation. In such chains, each

stage reads (consumes) some incoming

data, processes it and emits or writes

(produces) data for the next stage. 3D

geometry is a classic example of this,

with each stage doing operations like

scale, rotate, transform, hidden line

removal, texturing, etc.

Scalability – is a measure of the perfor-

mance of doing work on multiple

processors, relative to doing the same

work on a single processor. For example,

if a given application run takes two

seconds on a single processor, and the

same application takes one second on

two processors, then the scalability for

this task is 2. However, since there is

work done by the OS and by the task to

coordinate and synchronize work (i.e.

overhead), the scaling factor never

reaches m (the number of processors).

This limitation is described more fully by

Amdahl’s Law, which relates processors,

parallelism and synchronization. The

quality of an implementation of threading

is often measured by its scaling factor.

Concurrency – running activities

in parallel.

Synchronization – coordination of all

the individual work by each of a set of

threads into some merged result. One

example is waiting for one thread to

finish filling a segment of a buffer before

another begins using the newly-buffered

data. Synchronization is also necessary

when any thread has to alter data visible

to another thread.

Semaphore – a synchronization

mechanism — usable across processes

— that maintains a count between zero

and some maximum value, limiting the

number of threads that are simultane-

ously accessing a shared resource.

Mutex – a specially handled binary

variable that all threads agree to use to

guard access to a shared structure,

handle or other resource. This differs

from a semaphore in that there is only

one owner of the mutex at a time, but is

like a semaphore in that it is usable

across processes. A thread can only

manipulate the resource if it holds the

lock on the associated mutex; other

threads await the release of the mutex

variable. (In POSIX.1c UNIX, a mutex may

optionally be intra-process -only.)

Critical Section – a special form of a

mutex that offers very low overhead and

is usable only among the threads of one

process. (This is somewhat more direct

to code in Windows* NT than UNIX*.)

Race Condition – a bug in use of

threading where the code of one thread

“A” relies on another thread “B” to

complete some action, but where there is

no synchronization between the two

threads. The process operates correctly if

thread B “wins the race” by completing

its action before thread A needs it, but

the process produces incorrect or

varying results if thread A wins the race.

8

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

Enablers

Multithreading requires that the

underlying machine and OS supply

certain features allowing applications

to coordinate or describe their activities.

These include:

■ Primitives on which to build safe

synchronization methods

■ Protection of tasks from one another

— controlling object sharing

■ Hardware allowing multiple proces-

sors to communicate and identify

themselves and their saved state

■ Primitives describing start, termina-

tion, synchronization and control of

individual units of work

Processor Hardware
Readily Available

These enablers are now available

in workstations based on the

Intel® Architecture:

Processors and Chipsets

■ A wide variety of interlocked

compare-and-exchange instructions

■ Built-in cross-processor

communication, allowing

“glueless” multiprocessing

■ Cache consistency can be guaranteed

in multiprocessor systems, and syn-

chronization variables can be safely

held in cache, via “snoop” hardware

assuring cache coherency

■ Processor state is easily saved

and restored, including a

processor identifier

Visible Throughout
a Machine

■ name space for file
system, network
machines, named
pipes, etc.

■ multiprocess
shared memory

■ memory for, and names of,
semaphores and mutexes

■ pipes

Visible Throughout
a Process

■ address space
■ oaded executable code
■ Win32* resources like

string and icon tables,
loaded fonts, etc.

■ heap-allocated memory
file handles or OS
descriptors (including
sockets and shared
memory) and their state

■ the ANSI C errno

■ process arguments and
environment list

■ global and file-scope data
■ memory for critical

section variables

Individually Owned
by Each Thread

■ program counter
call/return stack

■ thread-local storage
(on some OSes)

■ state/content of CPU
registers

■ scheduling priority
■ UNIX signal masks
■ various runtime

statistics - CPU time, etc.
■ ownership of mutexes and

critical sections (when
locked by that thread)

Table 1: Resource Sharing Scope

Programming and Hardware Features:

Shared Resources

A key difference between multitasking

and multithreading is how application

resources are shared. The above

table contrasts different resource

sharing scopes:

In most cases, this resource sharing can

be of significant value; for example, all

threads of a process can share work

done to set up in-memory (heap

allocated) data structures. With tradi-

tional multitasking, additional work —

inter-process communication, shared

memory, semaphores, etc. — must be

done to arrange such sharing.

Care must be exercised, however: appli-

cations can be written to assume no

sharing is happening. Updating such

applications to use threading can result

in unsynchronized changes to such

shared data and the threads seeing

inconsistent data. This risk can be

minimized by:

■ Re-coding global data as a set

of structures, each gathering

related data

■ Guarding access to these structures

by mutexes

■ Use of thread-safe libraries of

functions and macros

9

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

■ Virtual memory hardware protects

processes from each other

■ High speed (100MHz), wide (8 byte)

system busses implemented by

advanced chipsets supporting

multiple processors

The incremental cost of getting a second

processor is a fraction of the whole-

system cost — from about $600 to about

$1,000 for today’s workstations.

If a second processor allows tools to

run an average of 30% faster, that

amounts to about one work-day per

week of improved user productivity.

System Motherboards

Multiprocessor motherboards are widely

available — frequently the standard

offering for technical workstations.

Cooling, mechanical and electrical

requirements for these boards are very

similar to existing system-integrator

experience, facilitating ease of use.

Complete Systems

In the technical workstation market-

place, multiprocessor systems are

becoming the norm. Most suppliers of

Intel® Architecture-based workstations

offer such machines to their technical

customers, either pre-configured with

two processors or as an upgrade option.

Recent research sponsored by Intel

indicates that over sixty percent of dual

processor workstations were purchased

as dual processor systems — in other

words, they were not upgraded.

Less Expensive Memory

Multithreaded applications place more

demand on the memory subsystem.

They require:

■ More memory – to save the state of

the various threads — primarily its

call/return stack. With complex work-

station applications, this state can

become sizable — many megabytes.

Additionally, more heap allocations

are simultaneously present.

■ More memory bandwidth – due to a

higher number of active memory

transactions per second.

Today’s Intel® hardware supports both at

a low cost.

Multithreading-capable OSes
and System Software

Operating systems now supply well-

defined methods for applications to start,

control, terminate and synchronize

threads of execution within one task.

These individual units of control can share

resources (like memory and I/O devices)

and can communicate easily and cheaply.

There are two major families of thread

implementations — that of Windows NT*

and UNIX*; they are not equivalent, but

offer very similar services. Both are

available on Intel Architecture-based

systems. (on page 14 lists and compares

the threading calls of the two OS families.)

Windows* NT

The Win32 Application Programming

Interface (API) provides a complete set of

threading primitives, which is identical

across all platforms implementing Win32.

Threads in UNIX*

Threading on UNIX systems is a bit more

complicated: there are two primary

threading APIs available today:

■ The POSIX*.1c threading standard,

agreed-upon by all major UNIX imple-

menters, and a feature of UNIX/98,

now being standardized by the

members of The Open Group

■ “UNIX International” or “Solaris*”

threads, available on some platforms,

is a superset of POSIX.1c threads

An application written to POSIX.

1c threads will be portable across

UNIX variants.

Portability Libraries

Besides each OS’ native interfaces,

API libraries are available from third

parties that present portable interfaces

to the programmer. While applying them

is not automated, code written to those

APIs becomes portable across

Windows NT and most UNIX systems.

Some examples:

■ Threads.h++ from Rogue Wave*

Software

http://www.roguewave.com

■ Mthread from the book Multithread-

ing Programming Techniques by

Shashi Prasad; download MThread

from http://165.254.151.1/people/

shashi/book/mpt.html

As a special case, implementations of

the Win32 API are available on UNIX, and

of POSIX.1c threads on Windows NT.

10

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

Applying Multithreading

Many applications are currently written

single-threaded. They can offer the user

improved performance and responsive-

ness were they to be threaded. Key

examples in this category include appli-

cations that spend most of their time

doing array mathematics and region-by-

region processing of graphical images.

Because of Amdahl’s Law — bounding

the parallelization-based improvement of

an application by the portion that cannot

be parallelized — some applications are

not good candidates for threading. A

classic example is any application whose

data merge or synchronization stages

are larger than all the potentially parallel

work to be done.

Here are some guidelines, some illus-

trated examples where threading is a

“win” and statistics from commercially

available threaded applications.

When to Use Multithreading

■ Algorithms that can be independently

applied to segments within a large

data set (rows or columns of arrays,

bands or regions of 2-dimensional

data, etc)

■ Pipelines with stages having similar

amounts of work

■ Maintaining GUI responsiveness even

while long computations are ongoing

■ When I/O can occur in parallel with

processing of earlier-buffered data

■ Multithread the parts of your code

that consume the most time; they

often are the easiest to parallelize

and scale best

When not to Use
Multithreading

Although multithreading is usually bene-

ficial, there are some situations where it

is not advised:

■ Parallel tasks which would each

do only a small amount of work

(compared to the time needed to

synchronize or merge the parallel

tasks’ operations)

■ Tasks where synchronization

overhead is as large, or larger than

the parallelized execution

■ Algorithms that change significant

amounts of global state with each

iteration (You can try to fix this in your

application, then look at multi-

threading it.)

■ Applications having only isolated

regions that could be parallelized

Additionally, if a workstation solution is

assembled from several independent

applications, multithreading is not applic-

able. A cooperative multitasking strategy

might be appropriate in this case.

Examples of Some
Techniques

Masking delays of slow
peripheral devices

Although today’s hard disks are quite

fast, processor speeds have advanced

more rapidly. As a result, there are

(roughly) 100’s of “spare” cycles of

processor time for each byte read off of

disk. The processor usually spends this

spare time in an “idle” loop in the OS or

in some other, lower priority application

— instead of doing productive work for

the application.

You can overlap CPU processing with the

otherwise-wasted I/O wait time by using

threads or “asynchronous” I/O. Overlap-

ping processing and I/O usually involves

double buffering; at the modest cost of

today’s inexpensive memory, you can

cause the processor to spend most of its

time doing work for your application.

Figure 1: Processor cycles wasted by single-threading

11

The example to the right shows how you

can regain otherwise idle cycles of a

processor. Double buffering can be easily

extended to additional buffers. However,

the time to complete the buffer read and

the processing of the buffer must remain

balanced; if not, a full buffer can waste

time awaiting processing resource.

Adding an additional processor can

provide that compute resource, gaining

additional application performance

improvement with no further source

code change.

This example also illustrates that

employing multithreading can be of

significant aid even on uni-processor

systems, because otherwise-idle CPU

cycles are used to do work while the I/O

subsystem proceeds independently.

Maintain GUI responsiveness
during computation

Even when applications perform long

computation sequences, users still want

the application GUI to be responsive —

if for no other reason than to control or

stop an incorrect operation. In the

absence of threading, the application has

to resort to unpredictable mechanisms

like timers or asynchronous

signal()s , sporadic pauses in com-

putation to check for input events, etc.

While these mechanisms can be made to

work, they usually result in:

■ Undesirably complex checks for

external events injected into

otherwise clean algorithmic code

■ Irregular or unpredictable

GUI responsiveness

Largely for these reasons, today’s GUIs

are multithreaded. For example, applica-

tions built with the Microsoft* Foundation

Classes (MFC) are actually multithreaded

— though the application coder is often

unaware of this. On multiprocessor

machines, GUI behaviour is almost

flawlessly smooth.

Effectively use available
processing power

Many algorithms are applied serially on

large data sets in memory. If applying the

algorithm to the data results in (predomi-

nantly) localized changes in the data, the

application can be parallelized.

Multithreading allows a second

processor to operate on the data struc-

tures in parallel with the first processor.

As with all parallelized operations, there

is some overhead due to:

■ Thread start-up and state retention

■ Checks in the algorithm that

operations are staying in the localized

data, postponing or queuing cross-

thread operations

■ Intermediate synchronization, if any

■ Final synchronization and merging

of results

Figure 2: Processor cycles gained back by multithreading

Figure 3: Serial data processing

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

12

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

The example to the right illustrates

several of these concerns, but still

produces an overall improvement in

processing time of some 45% —

significantly more if additional

processors were available.

This technique can be applied to many

workstation applications and drivers:

■ Fault simulation (which is

highly localized)

■ Stress analysis (after meshing

has happened)

■ Many graphical algorithms where

data is coordinate sorted (processing

can be done in bands or regions); for

example IC CAD design rule check

■ Many types of array calculations

Improving Producer/
Consumer Sequences

Some applications consist of sequences

of data transformations. Without

threading, the applications run each

stage in sequence, completely buffering

each intermediate data transformation.

See figure 5.

By employing multithreading, the overall

throughput can be improved (here, by

roughly 40%), and the intermediate

memory consumption can often be

reduced (with corresponding cache and

swapping benefits). See figure 6.

The cost of added synchronization

and buffer management is usually

significantly lower than the advantage

gained in parallelization. These kinds

of problems easily attain more

improvement with additional processors,

up to the depth of the pipeline.

Figure 4: Parallelized Data Processing

Figure 5: Single-threaded Producer/Consumer

Figure 6: Multithreaded Producer/Consumer

13

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

Resources to Build
Threaded Applications

To build a threaded application, the OS

must supply mechanisms to:

■ Query machine capabilities (number

of processors, etc.)

■ Start, exit from and terminate threads

■ Control thread scheduling and priority

■ Synchronize access to

shared resources

■ Handle asynchronous events

and signals

■ Accurately time (or timeout) operations

These facilities can be used directly —

or indirectly — from your application

source code.

Automated Parallelization Tools

Automated parallelization tools are

becoming more common. These tools

examine application source for actions

that can be independently performed and

loop iterations (particularly nested loops)

that can be done in parallel. They

transform your source by reordering

operations and inserting compiler direc-

tives or API calls to specify start,

synchronization, join and termination of

parallel tasks. While these tools can do

some parallelization autonomously, the

application benefits greatly if the

developer provides “hints” (directives) in

the source code. For example, see:

■ Kuck & Associates*;

http://www.kai.com

■ Pacific Sierra Research*;

http://www.psrv.com

■ The Portland Group*;

http://www.pgroup.com

To date, most of these tools work on

FORTRAN source code, but efforts are

underway to make parallelization

directives portable and usable from

within Cand C++ also. Visit the OpenMP

web site for more information,

including specifications:

■ OpenMP Consortium;

http://www.openmp.org

Independent Software Vendors (ISVs) can

benefit from using directives in 3 ways:

1. Directives are a form of higher-level

programming which can speed appli-

cation development. Programmers

still need to know their code, but

parallel decomposition can be done

more quickly than “hand coding.”

2. Directives like OpenMP are portable;

coding done once will work on

multiple platforms.

3. Directives allow the compiler to do

the bookkeeping work of threading

and synchronization — one of the

most error prone coding tasks.

Threading API Features

While automated threading tools can

produce acceptable results, they work

best only for “classic” multithreading

styles — nested loops, independent

basic blocks, etc. Applications have

greatest flexibility and control if they

make threading calls directly. The table

below describes many of the threading-

related calls available to the users of

Windows NT* and POSIX.1c-compatible

UNIX*: (See the Win32 API documentation

and The Single UNIX Specification, Ver. 2

for more complete information.)

Warnings, Risks and Remedies

At first glance, the risks and problems of

multithreaded code appear formidable.

However, this technology has been

available for many years and the risk and

remedies are well known. An observant

programming team can easily review

code to minimize these risks.

Rapid creation and destruction of

threads – Because thread creation and

termination can be expensive, use a pool

of pre-created threads that “sleep” until

they are told what to do. This can be

especially valuable in Windows NT*

“services” (in UNIX*, “daemons”) that

use threads to connect to a requestor,

hold the state of the request, and send

back some result. The incoming request

can be quickly delegated to a

pre-created thread.

Many more ready-to-run threads than

processors available – the overhead of

scheduling the threads becomes signifi-

cant. (By contrast, the number of threads

sleeping on programmed — for events is

less of an issue.)

Producer/consumer pipelines with

unbalanced work – if each stage in a

producer/consumer pipeline is not doing

similar amounts of work, the pipeline’s

overall performance will settle to the

throughput of the slowest stage

Link applications with thread-safe

libraries – many bugs are due to linking

a multithreaded application with the

“standard” (i.e. not thread-safe) versions

of the C library, etc.

14

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

Still holding a mutex when a thread

waits for something else – holding a

mutex blocks any other user of the

object the mutex is guarding. If you are

still holding a mutex when you are

blocked by something else — a slow I/O

operation, a network communication,

etc. — performance is lost. This also

places you at risk of deadlock (see

below). Do mutex locking at a fine-

enough grain to avoid having to hold a

lock while sleeping for something else.

Race conditions – if a thread writes

result data that affects the computations

of another thread, access to the first

thread’s result data must be guarded by

some synchronization mechanism. If it is

not, an application will produce one

result if the first thread “happens” to get

done before the second reads the data,

and a different result if the first thread

happened to take longer on a different

run. It is important to develop QA test

cases for a variety of load extremes.

Deadlocks – if a thread holds a synchro-

nization lock “A” when it “goes to sleep”

awaiting on another synchronization

object “B”, there is some risk that

another thread holding the lock “B”

will go to sleep awaiting the first lock

“A”; this is a classic deadlock. A

common remedy for such deadlocks is

to make the locks guard “smaller”

objects, holding the locks for smaller

amounts of time.

signal() or event mis-delivery –

UNIX signals and many GUI events are

delivered to the process; if a particular

thread has not been coded to receive or

handle these events, they can be lost or

mis-delivered to whatever thread

happens to be running at the time. This

OS Family: Windows NT* UNIX*
Purpose: (POSIX.1c)
create thread CreateThread(), _beginthread() Pthread_create()

thread terminates itself ExitThread(), _endthread() pthread_exit()

suspend and resume a SignalObjectAndWait(), Pause(), sigsuspend(),
thread to do work SuspendThread(), ResumeThread() pthread_kill(…,SIGSTOP),

pthread_kill(…,SIGCONT)

thread attribute control GetThreadPriority(), various pthread_attr_…() calls
SetThreadPriority(),
SetThreadPriorityBoost()

await thread termination the various general-purpose …Wait…() pthread_join()
functions - like SignalObjectAndWait(),
WaitForSingleObject(),
WaitForMultipleObjects()

kill a thread TerminateThread() pthread_cancel()

thread explicit yield SwitchToThread(), Sleep(0) pause()

semaphore manipulation CreateSemaphore(), OpenSemaphore(), sem_init(), sem_open(),
the various general-purpose …Wait…() sem_wait(), sem_trywait(),
functions, ReleaseSemaphore() sem_post(),sem_destroy(),

sem_unlink()

mutex manipulation CreateMutex(),OpenMutex() , the pthread_mutex_init(),
various general-purpose …Wait …() pthread_mutex_destroy(),
functions, ReleaseMutex() , pthread_mutex_lock(),
CloseHandle() pthread_mutex_trylock(),

pthread_mutex_unlock()

critical sections InitializeCriticalSection(), use in-process options on mutexes
Initialize…AndSpinCount(),
DeleteCriticalSection()

create and manage TlsAlloc(), pthread_key_create(),
thread-local storage TlsSetValue(), pthread_setspecific(),

TlsGetValue(), pthread_getspecific(),
TlsFree() pthread_key_delete()

Table 2: Principal Threading-related Calls

15

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

can be corrected by having a designated

thread receive these asynchronous

events; set thread-specific signal

delivery masks or event handlers.

Failure to check API return values –

most threading APIs check parameters

and process state, and return error indi-

cations if they detect any problems.

Because multithreaded applications

are more complicated to test and debug,

you can help yourself dramatically by

coding checks for these API-reported

error conditions.

Shared data must always be guarded

– an audit of an application for global or

file-scope data that might be shared is

very important. Many errors are made

in assuming that such data is not

shared, and “saving time” by omitting a

synchronization guard that later turns

out to be important.

Other problems, and techniques to avoid

or correct them, are described in the

following references.

References

On-Line References

An Introduction to Programming with
Threads, by Andrew Birrell;

■ http://gatekeeper.dec.com/pub/DEC/

SRC/research-reports/abstracts/

src-rr-035.html

News:comp.programming.threads

■ FAQ @ http://www.serpentine.com/

~bos/threads-faq

Win32 API documentation is available

on-line to MSDN subscribers at

■ http://premium.microsoft.com/

msdn/library

The Single UNIX* Specification,
Version 2, by The Open Group

■ http://www.rdg.opengroup.org/

onlinepubs/7908799/toc.htm

Applied Parallel Research

■ http://www.apri.com

Kuck & Associates

■ http://www.kai.com

Pacific Sierra Research

■ http://www.psrv.com

The Portland Group

■ http://www.pgroup.com

OpenMP Consortium

■ http://www.openmp.org

Rogue Wave Software

■ http://www.roguewave.com

Books

■ Programming with Threads, by

Kleiman, Shah and Smaalders;

ISBN 0-13-172389-8

■ Threads Primer: A Guide to Multi-

Threaded Programming, by Lewis and

Berg, ISBN 0-13-443698-9

■ Multithreading Applications in Win32,

by Beveridge and Wiener;

ISBN 0-201-44234-5, see

http://www.awl.com/cseng/titles/

0-201-44234-5

■ Win32 Multithreaded Programming,

by Cohen and Woodring;

ISBN 1-56592-296-4, see

http://www.oreilly.com/catalog/

multithread

■ Multithreading Programming Tech-

niques by Shashi Prasad;

ISBN 0-07-912250-7, see

http://mcgraw-hill.inforonics.com/

cgi/getarec?mgh27812

16

C o s t / P e r f o r m a n c e B e n e f i t s o f M u l t i - T a s k i n g o n I n t e l ® A r c h i t e c t u r e M u l t i p r o c e s s o r W o r k s t a t i o n s

THIS TEST REPORT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by Intel or otherwise, to any intellectual property rights is
granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any
express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® microprocessors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current character-
ized errata are available on request.

The hardware manufacturer remains solely responsible for the design, sale and functionality of its product, including any liability arising from product infringement or
product warranty.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as
measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of
information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the perfor-
mance of Intel products, reference:

http://www.intel.com/procs/perf/limits.htm or call (U.S.) 1-800-628- 8686 or 1-916-356-3104.

SPECint95* and SPECfp95* benchmark tests reflect the performance of the microprocessor, memory architecture and compiler of a computer system on compute-
intensive, 32-bit applications. SPEC* benchmark tests results for Intel microprocessors are determined using particular, well-configured systems. These results may or
may not reflect the relative performance of Intel microprocessor in systems with different hardware or software designs or configurations (including compilers). Buyers
should consult other sources of information, including system benchmarks, to evaluate the performance of systems they are considering purchasing. For more informa-
tion about SPEC95*, including a description of the systems used to obtain these test result, and other information about microprocessor and system performance and
benchmarks, visit Intel’s Internet web site at http://www.intel.com or call 1-800-628-8686.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
or call 1-800-879-4683

*Third-party brands and names are the property of their respective owners.
Copyright © 1999 Intel Corporation Order Number 283996-001

